1. PYZO ENVIRONMENT (http://www.pyzo.org/)

- interactive shell
- block of code (ctrl + E to compile, ctrl + S to save)
- python 3.4.1 (also has to be installed (to check: run cmd -> python -V))

2. VARIABLES

Variables are nothing but reserved memory locations to store values. This means that when you create a variable you reserve some space in memory.

2A: Assigning Values to Variables

The equal sign (=) is used to assign values to variables.

```
apples = 11
berries = 45

bus = 20
train = 52.56
```

Textual values are inside quotes:

```
word = 'hello'
sentence = 'Hello world, this is sentence.'
```

Not allowed values:

```
# mixing number with textual value
wrong1 = 'hello'45
wrong2 = 12men
wrong3 = 7'apples'

# ...
wrong4 =
wrong5 = 'hello
wrong6 = 158 597
wrong6 = 158,597 # should be 158.597
```

Not allowed names:

```
12train = 'variable starting with number'
train-variable = 'variable name with special symbol'
hi there = 'variable with two words'
```

Allowed names:

```
train11 = 'number not in the beginning'
    my_variable = 'variable name with underscore (only allowed
symbol)'
    myVariable = 'camelCase naming'
```

3. BASIC COMMANDS

3A: Print

Outputs to command line

- debugging
- informative purposes

without a variable

printing textual variable (more possible ways)

```
fruit = 'banana'
print (fruit)
print ('favourite fruit: ' + fruit)

number_of_apples = 12
print ('Hi, I have', number_of_apples, 'apples.' )

fruit = 'banana'
number_of_apples = 12
print ('my favourite fruit is %s, but I have %s apples.' %(fruit, number of apples))
```

3B: Input

Getting data from user

```
person = input('Enter your name: ')
print('Hello', person)

# print converts values to strings!
number_of_apples = input('How many apples do you have?')
print('Hello', person ,',you have' , number_of_apples ,'apples.')
# number_of_apples
```

3C: Comments

Information purposes, annotating code

```
# this code will be about fruits
fruit = 'banana' # this is my favourite fruit
```

4. NUMBERS (https://docs.python.org/3/library/stdtypes.html#numeric-types-int-float-complex)

4A: Numerical types

int (signed integers): They are often called just integers or ints, are positive or negative whole numbers with no decimal point.

float (floating point real values): Also called floats, they represent real numbers and are written with a decimal point dividing the integer and fractional parts. Floats may also be in scientific notation, with E or e indicating the power of 10 ($2.5e2 = 2.5 \times 10^2 = 250$).

```
litres_of_milk1 = 2.17 # float
litres_of_milk2 = 3.77 # float
number_of_people = 3 # integer
```

Converting numerical types with int() and float()

```
float(number_of_people)
int(litres_of_milk)
```

4B: Doing math

basic operations:

```
print (2 + 3) # addition
print (2.14 - 0.58) # subtraction
print (2 * 1.78) # multiplication
print (5.14 / 3) # division
```

other operations:

```
# negation
money_yesterday = 120
money_missing = -money_yesterday
# modulo - remainder after division
apples = 27
apples_for_pie = 5
apples_not_used = apples % apples_for_pie
# exponent, square root
square1 edge = 2
square1_area = pow(square1_edge, 3) # also square1_edge ** 2
square2 area = 3
square2_edge = pow(square2_area, 0.5)
# increment, decrement
region_inhabitants = 1532
region inhabitants += 29 # immigration, region inhabitants = 1561
region_inhabitants -= 15 # emigration, region_inhabitants = 1546
```

comparing numbers:

```
coef1 = 2.145

coef2 = 1.245

coef3 = 0.475
```

```
print (coef1 > coef2)
print (coef1 <= coef3) # smaller or equal
print (coef3 = coef2) # equal !
print (coef3 != coef2) # not equal</pre>
```

4C: Number methods

```
rounding round()
    # round to integer
    invited_people = 157
    inviting_effectivity = 0.43
    expected_people = round(invited_people * inviting_effectivity)

# rounding to decimal points
    two_decimals = round(12.131321, 2) # 12.13

maximum max(), minimum min()
    region1 = 156
    region2 = 17
    region3 = 478
    region4 = 69
    regions_max = max(region1, region2, region3, region4)
    regions_min = min(region1, region2, region3, region4)
```

5. STRINGS (https://docs.python.org/2/library/string.html)

variables with textual value

5A: String values

setting values, getting substrings with []

```
a_string = 'hello world!'
print (a_string ) # hello world!
print ('value of my string is', hello_string)

# getting substring (index 0 ~ position 1 !)
print (a_string[0]) # h -> character at index 0
print (a_string[-1]) # ! -> first character from the end
print (a_string[0:5]) # hello -> characters at indexes 0 to 5
```

string operators

```
# in returns true if a character exists in the given string
```

```
a_string = 'hello world!'
print ('a' in a_string) # False
print ('hello' in a_string) # True

# merging strings with +
a = 'hello'
b = 'world!'
print (a + b) # helloworld

# repetition with *
a = 'hello'
print (a * 4) # hellohellohellohello

comparing strings:

name = "Bob"
print (name == "Alex") # False
```

5A: String methods

```
(https://docs.python.org/3/library/stdtypes.html#string-methods)
```

```
find()
             # find() returns position of substring or -1
             hello_string = 'hello world!'
             print (hello string.find('a')) # -1
             print (hello_string.find('l')) # 2
             print (hello_string.find('hello')) # 1
             # second (starting index) and third (ending index) parameter
             print (hello_string.find('l', 4)) # 9
             print (hello string.find('o', 0, 5)) # 4
      count()
             # count() return number of occurences
             hello_string = 'hello world!'
             print (hello_string.count('l')) # 3
      isnumeric()
             # isnumeric() return true if string contains only numeric
characters
             text_string = 'hello world!'
             number_string = '1547854'
             print (text string.isnumeric()) # False
             print (number_string.isnumeric()) # True
      len()
```

6. BOOLEANS

Boolean values are the two constant objects False and True

```
bool()
    # bool will evaluate 0, empty string or None value as False
    number1 = 0
    number2 = 0.0
    number3 = 15
    print (bool(number1)) # False
    print (bool(number2)) # False
    print (bool(number3)) # True

text1 = 'hello'
    text2 = ''
    print (bool(text1)) # True
    print (bool(text2)) # False

nothing = None
    print (bool(nothing)) # False
```

7. CONVERSION OF DATA TYPES

```
# int() converts to integer number
print (int(21.75)) # 21
print (int('456')) # 456
print (int(False)) # 0

# float()
print (float('1.2456')) # 1.2456
print (float(12)) # 12.0
print (float(True)) # 1.0

# str()
print (str(12)) # '12'
print (str(False)) # 'False'

# bool()
```

```
print (bool(-1)) # True
print (bool('hallo')) # True
print (bool('')) #False
print (bool(0)) #False
```

Motivation:

```
# problems with combination of data types
a_string = "blabla"
a_number = 15
print (a_string + a_number) # TypeError
```