1. SETS, TUPLES, DICTIONARIES
1A: TUPLES

A tuple consists of a number of values separated by commas

Creating tuple
tuple with more than 1 value
new_tuple = 12, 15, 'hello', True
print(new tuple) # (12, 15, 'hello')

tuple with 0 values
empty tuple = tuple()

#tuple with 1 value
singleton tuple = 5,
print (singleton_tuple) # (5,)

Creating tuple also with list inside
new tuple = 12,15, 'hello', True, [12, 15, False]
print(new tuple) # (12, 15, 'hello', True, [12, 15, Falsel)

Nested tuple
nested tuple = (12,14), 16
print(nested tuple) # ((12, 14), 16)

Getting values
nested tuple = (12,14), 16
print(nested tuple[l]) # 16
print(nested tuple[0]1[0]) # 12

Tuples are immutable (values cant be changed)
nested tuple = 12,15, 'hello', True
nested tuple[0] = 13 # TypeError: 'tuple' object does not support item
assignment

But elements could be mutable objects
nested tuple = (12,14), 16, []
nested tuple[2].append(3)
print(nested tuple) # ((12, 14), 16, [3])

nested tuple = [12,15], 'hello', True
nested tuple[0][1] = 13
print (nested tuple) # ([12, 131, 'hello', True)

So ...
list = [4, (5, 7), (2, 3)]

1ist[0] = 5 # okey
list[1] = 5 # okey
list[2][1] = 4 # TypeError: 'tuple' object does not support item assignment

Operators are working:
test tuple = 'hello', 15, [14, 15, 'egg'], True

print
print
print
print
print
print

len(test tuple)) # 4

15 in test tuple) # True

test tuple + (4,2)) # ('hello', 15, [14, 15, 'egg'], True, 4, 2)
test tuple[2:4]) # ([14, 15, 'egg'l, True)

test tuple.index(15)) # 1

test tuple.count('hello')) # 1

PRy

Converting list to tuple with list() function:
new tuple = (16, 12, 15, True, 'hello')
new list = list(new tuple)

print(new list) # [16, 12, 15, True, 'hello']

...and tuple() function:
a list = [15, 14, [2, 31]

a string = 'I want to be a tuple’

print(tuple(a list)) # (15, 14, [2, 31)

print(tuple(a string)) # ('I', ' ', 'w', 'a', 'n', 't', "', 't', ‘o', " ',
Ibll lell ! II Iall ' Il Itll lLIII Ipll I.LII Iel)

Iterating over tuple:
test tuple = 'hello', 15, [14, 15, 'egg'], True
for i in test tuple:
print (1)

Values assigning “trick”:
normal tuple = (12 ,16, 7)

X, ¥, z = normal tuple
print (x) # 12

print (y) # 16

print (z) # 7

Why using tuples?
- immutable

- computationally cheaper to work with
- 7

1B: SETS
Mutable, unordered (!see below) collection of unique values

Creating a set:
creating set with curly braces {}
new setl = {15, 17, False, 'tea'}

empty set can be created with set() function
new empty set = set() # set()

new set from string, list or tuple

new set string = set('creating a set') # {' ', 'i', 't', 'c',
new set list = set([12, 15]) # {12, 15}

new_set tuple = set((15, True)) # {True, 15}

List cannot be inside set:
set with list = {15, 0, [2, 3]} # TypeError: unhashable type:

..but tuple is ok:
set with tuple = {15, 0, (2, 3)} # ok

Some operators are working:
test set = {'element3', 15, True}

print(len(test set)) # 3
print(15 in test set) # True

Set has some methods:
add() is alternative to append()
set _example = {15, 2, 0, 14}
set _example.add(7)
print(set example) # {0, 7, 2, 14, 15}

remove has problem when element is not in set

'list’

set _example = {15, 2, 0, 14}

set _example. remove(2)

print(set example) # {0, 14, 15}
set _example.remove(158) # KeyError

discard is without error when element is not presented
set example = {15, 2, 0, 14}

set example.discard(484564768)

print(set example) # {0, 2, 14, 15}

union
a_set = {5,1,6,7,3,2}
print(a_set.union({4,5})) # {1, 2, 3, 4, 5, 6, 7}

intersection
a set = {5,1,6,7,3,2}
print(a_set.intersection({1,4,5})) # {1, 5}

difference
a_set = {5,1,6,7,3,2}
print(a_set.difference({1,4,5})) # {2, 3, 6, 7}

Iterating over set:
set_example = {15, 2, 0, 14}

for i in set_example:
print (i)

Set is collection with unique values:
print(set('abrakadabra')) #
)

Ibl, IaI, Ir.I, Ikl, ldl}
print(set(((2,3), (2, 3))) {

{
{(2, 3)}

Why using sets?
- ordering

a_set = {5,1,6,7,3,2}
print(a_set) # {1, 2, 3, 5, 6, 7}

- membership testing
- removing duplicates
- mathematical operations - intersection, union, difference

1C: DICTIONARIES

Mutable collection of key value pairs

Creating dictionary:

a = dict(one=1, two=2, three=3)

b ={'one': 1, 'two': 2, 'three': 3}

c = dict(zip(['one', 'two', 'three'l, [1, 2, 31))
d = dict([('two"', 2), ('one', 1), ('three', 3)1])
e = dict({'three': 3, 'one': 1, 'two': 2})

The key is instead of index to access value (dictionaries are not ordered):
so this is not working anymore
a dict = {'a': 15, 'b': 17, 'c': 250}
a dict[0] # KeyError: 0

...but this is okey now
a dict['a'] # 15

Dictionaries are mutable:
a dict = {'Bob': 45, 'Alice': 89, 'Cecilia': 250}
a dict['Bob'] += 20
print(a_dict) # {'Alice': 89, 'Cecilia': 250, 'Bob': 65}

Values and keys can be strings/ numbers/ lists:
a dict = {1: 'text value', 'text key': 89, 3: [80, False]}

Methods and operators of dictionary:
a dict = {'a': 156, 'b': 89, 'c': 41, 'd': 547}
print(a dict.items()) # dict items([('b', 89), ('a', 156), ('d', 547), ('c',
41)1)
print(a dict.keys())
list(a_dict.keys()) returns ['b', 'a', 'd', 'c']
print(a_dict.values()) # dict values([89, 156, 547, 41])
list(a dict.values()) returns [89, 156, 547, 41]
print(len(a dict)) # 4

dict keys(['b', 'a', 'd', 'c'])

get() returns None if key is not defined
print(a dict.get(4)) # None
print(a dict.get('a')) # 156

Iterating over dictionary:
dict _example = {'a': 156, 'b': 89, 'c': 41, 'd': 547}

for i in dict _example:
print (i) #d, b, a, c

for i in dict _example.values():
print (i) # 547, 89, 156, 41

for i in dict example.keys():
print (i) #d, b, a, c

Why using dictionaries?
- switch-case (condition alternative):

time = int(input('what hour is it?')) # 10

what to do = {
5: 'you should be sleeping’,
8: 'make a breakfast',
10: 'have a coffee',
15: 'go to shop',
20: 'have a shower'

print(what to do[time]) # have a coffee

- making advanced constructions (db alternative):

countries stats = {
‘Nigeria' : {
'"GDP': 1109000,
"rank': 20,
'languages': ['English']
I
'South Africa' : {
'"GDP': 725004,
‘rank': 30,
‘languages': ['Zulu', 'Xhosa', 'Afrikaans', 'English']
I
'"Ethiopia' : {
"GDP': 132000,
‘rank': 65,
'languages': ['Amharic']
}
}

print(countries stats|['Nigeria']['languages']) # ['English']

2. FUNCTIONS

“a block of code that could be callable”
used for:

- repeated code
- atomizing program

- making code more readable

examples from “real life”:

refrigerator = {

"milk": 5,
"eggs": 4,
"cakes": 0,

calling this function we add 3 eggs in refrigerator
def buy eggs():
print('adding 3 eggs to refrigerator')
refrigerator["eggs"] += 3
print('new eggs added to refrigerator')
print('refrigerator', refrigerator)

calling this function we add 1 milk in refrigerator
def buy milk():
print('adding 1 milk to refrigerator')
refrigerator["milk"] += 1
print('new milk added to refrigerator')
print('refrigerator', refrigerator)

calling this function we add 1 cake but use some eggs and milk
def make cake():
print("preparing cake")
if (refrigerator["milk"] >= 2 and refrigerator["eggs"] >= 4):
refrigerator["milk"] -= 2
refrigerator["eggs"] -= 4
refrigerator|["cakes"] +=1
print("we have a new cake in the refrigerator")
print('refrigerator', refrigerator)
else:
print("sorry, we dont have enough of eggs or milk")

make cake()

preparing cake

we have a new cake in the refrigerator

refrigerator {'milk': 5, 'eggs': 4, 'cakes': 0}
note: function has to be defined before it is called

say hello() # name 'say hello' is not defined

def say hello():
print('hello there!")

2A: ARGUMENTS

arguments - values passed to function

argument defines how many eggs are we adding
def buy eggs(eggs):
print('adding', eggs, 'eggs to refrigerator')
refrigerator["eggs"] += eggs
print(‘'new eggs added to refrigerator')
print('refrigerator', refrigerator)

calling buy eggs function with argument
buy eggs(7)

adding 7 eggs to refrigerator
new eggs added to refrigerator
refrigerator {'milk': 5, 'eggs': 11, ‘'cakes': 0}

setting default value as argument - in case of no argument passed, this value will be applied

argument defines how many eggs are we adding
def buy eggs(eggs = 3):
print('adding', eggs, 'eggs to refrigerator')
refrigerator["eggs"] += eggs
print('new eggs added to refrigerator')
print('refrigerator', refrigerator)

buy eggs() # calling buy eggs function without argument
adding 3 eggs to refrigerator

new eggs added to refrigerator

refrigerator {'milk': 5, 'eggs': 7, 'cakes': 0}

buy eggs(2) # calling buy eggs function with argument
adding 2 eggs to refrigerator

new eggs added to refrigerator

refrigerator {'milk': 5, 'eggs': 9, 'cakes': 0}

more arguments:

defining how many eggs and milk do we need for a cake
def make cake(eggs = 4, milk = 2):
print("preparing cake")
if (refrigerator["milk"] >= milk and refrigerator["eggs"] >= eggs):
refrigerator["milk"] -= milk
refrigerator["eggs"] -= eggs
refrigerator["cakes"] +=1

print("we have a new cake in the refrigerator")
print('refrigerator', refrigerator)

else:
print("sorry, we dont have enough of eggs or milk")

calling make cake function, defining eggs to 3 and bottles of milks to 4
make cake(3, 4)

define number of eggs to 5, number of milk bottles will be default
make cake(5)

define number of milk bottles to 1, number of eggs will be default
make cake(milk = 1)

*args keyword - used when we dont know how many arguments are we waiting for

def say someting(name, weather, *args):
print('hello, my name is', name)
print('we have a', weather, 'weather')
for a in args:
print(a)

say someting('Bob', 'sunny', 'carrot', 150, True)

#hello, my name is Bob
#we have a sunny weather
#carrot

#150

#True

2B: SCOPE - LOCAL VS GLOBAL VARIABLES

- variables defined inside the function are not defined outside of this function, ...

- global variables - variables defined outside of all functions, objects, ...
- could be read from anywhere
- using “global” keyword when writing to global variable
- local variables could be used only inside the scope they were defined in

examplel - another favourite color is defined inside function
favourite color = 'blue’

def change favourite color(new color):
favourite color = new color
print('favourite color should be changed to', favourite color)

change favourite color('pink")
print(favourite color) # blue

example2 - reading global variable is ok everywhere
favourite color = 'blue’

def what is my favourite color():
print('my favourite color is', favourite color) # blue

what _is my favourite color()

example3 - using keyword global to set value of global variable
favourite color = 'blue’

def change favourite color(new color):
global favourite color
favourite color = new color

change favourite color('pink')
print(favourite color) # finally pink

example 4 - accessing local variable

def create local variable(local value):
local variable = local value
print(local variable) # 'hello local'

create local variable('hello local')
print(local variable) # name 'local variable' is not defined

2C: RETURN

- log of function in programming returns something as a output
- keyword “return” ends the function and sends a value back

def make average(number list):
avg = sum(number list)/len(number list)
return avg

print(make average([3,2,4,6])) # 3.75

making cakes example
refrigerator = {

"milk": 5,
"eggs": 4,
"cakes": 0,

how many cakes we are able to make

def number of cakes(eggs = 3, milk = 1):
max_eggs = refrigerator['eggs'] / eggs
max_milk = refrigerator['milk'] / milk
return min([max_eggs, max_milk])

print(number of cakes(1,1)) # 4 cakes could be made
print(number of cakes(4,1)) # only 1 cake could be made

	1. SETS, TUPLES, DICTIONARIES
	1A: TUPLES
	1B: SETS
	1C: DICTIONARIES

	2. FUNCTIONS

