1. FILESYSTEM - OPEN() http://www.diveintopython3d.net/files.html

open(file, mode="r", buffering=-1, encoding=None, errors=None, newline=None, closefd=True)
1A: ACCESSING FILE - OPENING AND CLOSING STREAM

(test.txt consists of text “text text text”)

getting file to variable:
a_file = open("C:/temp/test.txt")
print(a_file)
<_io.TextIOWrapper name='C:/temp/test.txt' mode='r' encoding='cpl252'>

reading content:
a_file = open("C:/temp/test.txt")
content = a_file.read()
print(content) # text text text

closing stream:
a_file = open("C:/temp/test.txt")
a_file.close()
content = a_file.read()
print(content) # ValueError: I/O operation on closed file.

1B: ENCODING

a_file = open('C:/temp/test.txt', encoding="cp1252")
content = a_file.read()
print(content) # ctStZzcstyté=

a_file = open('C:/temp/test.txt', encoding="ascii')

content = a_file.read()

print(content)

UnicodeDecodeError: 'ascii' codec can't decode byte ©x9a in position 2: ordinal not in
range(128)

1C: MODE - WRITING, APPENDING

http://www.diveintopython3.net/files.html

Character Meaning

et open for reading (default)
W' open for writing, truncating the file first
e open for writing, appending to the end of the file if it exists http
"' binary mode /st
't text mode (default) ack
"+t open a disk file for updating (reading and writing) ove
'ur universal newline mode (for backwards compatibility; should not be used in new rflo
code) w.c
om/
a/23566951/1130598
writing to file:

a_file = open('C:/temp/test.txt’', 'w') # mode has to be changed to 'w'

a_file.write('hi there, I am your new text') # text is not 'hi there, I am your new
text'

a_file.seek(9) # will be discussed later

print(a_file.read()) # io.UnsupportedOperation: not writable

writing and reading files:
a_file = open('C:/temp/test.txt', 'r+') # mode changed to 'r+'
a_file.write('hi there, I am your new text')
a_file.seek(@) # will be discussed later
print(a_file.read()) # hi there, I am your new text

appending to file:
- append adds to existing file or create one if it doesnt exist
- write truncates existing file and writes then

write mode

for i in range(©,5):
a_file = open('C:/temp/test.txt', 'w")
a_file.write(str(i))

file is now 4

append mode

for i in range(©,5):
a_file = open('C:/temp/test.txt', 'w")
a_file.write(str(i))

file is now 1234

a_file = open('C:/temp/test2.txt"', 'a+') # test2.txt doesnt exist
a_file.write('hello I am new here")
now there is a test2.txt file with 'hello I am new here’

1D: WITH - BETTER WAY TO OPEN FILE

with closes the stream automatically - its much more safier

with open("C:/temp/test.txt", 'w+') as a_file:
a_file.write('text text')

and file is closed now

1E: CURSOR POSITION

position of stream

tell() - returns position

with open("C:/temp/test.txt", 'w+') as a_file:
print(a_file.tell()) # ©
a_file.write('text') # write changes position
print(a_file.tell()) # 4

seek(offset, from_what = 1) - changes position to offset

with open("C:/temp/test.txt", 'w+') as a_file:
print(a_file.tell()) # ©
a_file.write('text') # write changes position

print (a_file.read())# '’

a_file.seek(9)
print (a_file.read())# ' text'

print(a_file.tell()) # 4
a_file.seek(2)
print (a_file.read()) # '"tx'

from_what argument has 3 possibilities:
SEEK_SET or 0 — start of the stream (the default)
SEEK_CUR or 1 — current stream position; offset may be negative
SEEK _END or 2 — end of the stream; offset is usually negative

read(size) - read has an argument - max size of read text

with open("C:/temp/test.txt", 'w+') as a_file:
a_file.write('text text text text text text') # write changes position
a_file.seek(9)
print(a_file.read(6)) # text t

1F: LINES

Creating new line in write() - /n does the magic:

with open("C:/temp/test.txt", 'w+') as a_file:
for i in range(©,10):
a_file.write('line' + str(i) + ': blablabla\n')

a_file.seek(9)
print(a_file.read())

Reading file line by line:

with open("C:/temp/LICENSE_PYTHON.txt", 'r') as a_file:
for line in a_file:
print(line)

readline(limit = -1) - reads to the end of line

with open("C:/temp/test.txt", 'r+') as a_file:
print(a_file.readline()) # line@: blablabla
a_file.seek(75)
print(a_file.readline()) # e4: blablabla

readlines(hint = -1) - Read and return a list of lines from the stream. hint can be specified to
control the number of lines read: no more lines will be read if the total size (in
bytes/characters) of all lines so far exceeds hint.

with open("C:/temp/test.txt", 'r+') as a_file:
print(a_file.readlines())
['line@: blablabla\n', 'linel: blablabla\n', 'line2: blablabla\n', 'line3:
blablabla\n', 'line4: blablabla\n', 'line5: blablabla\n', 'line6: blablabla\n', 'line7: blablabla\n',
'line8: blablabla\n', 'line9: blablabla\n']

1G: BINARY MODE

with open("C:/temp/test.jpg", 'rb+') as a_file:
for line in a_file:
print(line)

2. EXCEPTIONS http://www.diveintopython3.net/your-first-python-program.html#exceptions

- indication that something went wrong
2A: MOTIVATION

- wrong user input

- preventing expected errors
- handling error messages

- preventing code crashes

2B: TRY EXCEPT BLOCK

try - check if code is valid
except - if code is not valid

without using try except block
print(4/0) # ZeroDivisionError: division by zero
print('next lines') # not printing anything, code is crashed

using try except block
try:
print(4/0)
except:
print('math error') # this is printed

print('next lines') # this is printed also, code is still working

preventing wrong input
number = input('select a number: ')

try:
number + 5
print(number + 5)
except:
print('input is not a number')

index() returns error if element is not in list
a_list = [5, 1, 6, 7, 3, 2]

for i in range(1,7):
print('index of ',i, 'is', a_list.index(i))

index of 1 is 1
index of 2 is 5

http://www.diveintopython3.net/your-first-python-program.html#exceptions

index of 3 is 4
ValueError: 4 is not in list

with try-except
a_list = [5, 1, 6, 7, 3, 2]

for i in range(1,7):
try:
print('index of ',i, 'is', a_list.index(i))
except:
print(i, 'is not in list")

index of 1 is 1
index of 2 is 5
index of 3 is 4
4 is not in list
index of 5 is @
index of 6 is 2

H OH OB H H H

2C: ELSE

else- used with try and except, else will be evaluated if there is no error

try:

number = int(input('enter a number:'))
except:

print('this is not a number')
else:

print('this is a number')

2D: FINALLY

finally - used with try and except, code inside finally block is executed in any case

try:
number = int(input('enter a number:'))
except:
print('this is not a number')
else:
print('this is a number')
finally
print('thank you for using our program')

2E: RAISE

raise - exits the code with error message
all error classes https://docs.python.org/3.3/library/exceptions.html#concrete-exceptions

raising default error message
a_list = [5, 1, 6, 7, 3, 2]

https://docs.python.org/3.3/library/exceptions.html#concrete-exceptions

for i in range(1,7):
try:
print('index of ',i, 'is', a_list.index(i))
except:
print(i, 'is not in list")
raise # ValueError: 4 is not in list

raising defined error message
a_list = [5, 1, 6, 7, 3, 2]

for i in range(1,7):
try:
print('index of ',i, 'is', a_list.index(i))
except:
print(i, 'is not in list")
raise AssertionError('hi there, this is a custom error message")

raise could be used outside of try-except block

lucky_number = input('whats your lucky number?:')
if lucky_number.find('7"') == -1:

raise Exception ('this is not a lucky number')
else:

print('this is a lucky number')

3. BREAK (FOR CYCLES)

break - ends the iteration

rainfall_months = [10, 120, 150, 200, 210, 268, 272, 281, 295, 330, 354, 389]
months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov',
‘Dec']

rainfall_required = 270
month_required = str()

for mi in range(len(rainfall_months)):
if rainfall_months[mi] > rainfall_required:
month_required = months[mi]
break

print(month_required) # Jul

