
1. FILESYSTEM - OPEN() http://www.diveintopython3.net/files.html
 open(file, mode='r', buffering=-1, encoding=None, errors=None, newline=None, closefd=True)

 1A: ACCESSING FILE - OPENING AND CLOSING STREAM

 (test.txt consists of text “text text text”)

 getting file to variable:
 a_file = open("C:/temp/test.txt")

print(a_file)
<_io.TextIOWrapper name='C:/temp/test.txt' mode='r' encoding='cp1252'>

reading content:
 a_file = open("C:/temp/test.txt")

content = a_file.read()
print(content) # text text text

 closing stream:
 a_file = open("C:/temp/test.txt")

a_file.close()
content = a_file.read()
print(content) # ValueError: I/O operation on closed file.

 1B: ENCODING

 a_file = open('C:/temp/test.txt', encoding='cp1252')

content = a_file.read()
print(content) # ctštžcštýté=

a_file = open('C:/temp/test.txt', encoding='ascii')
content = a_file.read()
print(content)
UnicodeDecodeError: 'ascii' codec can't decode byte 0x9a in position 2: ordinal not in

range(128)

 1C: MODE - WRITING, APPENDING

http://www.diveintopython3.net/files.html

http

://st

ack

ove

rflo

w.c

om/

a/23566951/1130598

 writing to file:
 a_file = open('C:/temp/test.txt', 'w') # mode has to be changed to 'w'

a_file.write('hi there, I am your new text') # text is not 'hi there, I am your new

text'
a_file.seek(0) # will be discussed later
print(a_file.read()) # io.UnsupportedOperation: not writable

writing and reading files:
 a_file = open('C:/temp/test.txt', 'r+') # mode changed to 'r+'

a_file.write('hi there, I am your new text')
a_file.seek(0) # will be discussed later
print(a_file.read()) # hi there, I am your new text

 appending to file:

- append adds to existing file or create one if it doesnt exist

- write truncates existing file and writes then

 # write mode
 for i in range(0,5):

 a_file = open('C:/temp/test.txt', 'w')
 a_file.write(str(i))
file is now 4

append mode
for i in range(0,5):
 a_file = open('C:/temp/test.txt', 'w')
 a_file.write(str(i))
file is now 1234

a_file = open('C:/temp/test2.txt', 'a+') # test2.txt doesnt exist
a_file.write('hello I am new here')
now there is a test2.txt file with 'hello I am new here'

1D: WITH - BETTER WAY TO OPEN FILE

 with closes the stream automatically - its much more safier

 with open("C:/temp/test.txt", 'w+') as a_file:

 a_file.write('text text')

and file is closed now

 1E: CURSOR POSITION

 position of stream

 tell() - returns position

 with open("C:/temp/test.txt", 'w+') as a_file:

print(a_file.tell()) # 0
a_file.write('text') # write changes position
print(a_file.tell()) # 4

 seek(offset, from_what = 1) - changes position to offset

 with open("C:/temp/test.txt", 'w+') as a_file:

 print(a_file.tell()) # 0
 a_file.write('text') # write changes position

 print (a_file.read())# ''

 a_file.seek(0)
 print (a_file.read())# ' text'

 print(a_file.tell()) # 4
 a_file.seek(2)
 print (a_file.read()) # 'tx'

from_what argument has 3 possibilities:

SEEK_SET or 0 – start of the stream (the default)

SEEK_CUR or 1 – current stream position; offset may be negative

SEEK_END or 2 – end of the stream; offset is usually negative

 read(size) - read has an argument - max size of read text

 with open("C:/temp/test.txt", 'w+') as a_file:

 a_file.write('text text text text text text') # write changes position
 a_file.seek(0)
 print(a_file.read(6)) # text t

 1F: LINES

Creating new line in write() - /n does the magic:

 with open("C:/temp/test.txt", 'w+') as a_file:

 for i in range(0,10):
 a_file.write('line' + str(i) + ': blablabla\n')

 a_file.seek(0)
 print(a_file.read())

 Reading file line by line:

with open("C:/temp/LICENSE_PYTHON.txt", 'r') as a_file:

 for line in a_file:
 print(line)

readline(limit = -1) - reads to the end of line

 with open("C:/temp/test.txt", 'r+') as a_file:

 print(a_file.readline()) # line0: blablabla
 a_file.seek(75)
 print(a_file.readline()) # e4: blablabla

readlines(hint = -1) - Read and return a list of lines from the stream. hint can be specified to

control the number of lines read: no more lines will be read if the total size (in

bytes/characters) of all lines so far exceeds hint.

 with open("C:/temp/test.txt", 'r+') as a_file:

 print(a_file.readlines())
 # ['line0: blablabla\n', 'line1: blablabla\n', 'line2: blablabla\n', 'line3:

blablabla\n', 'line4: blablabla\n', 'line5: blablabla\n', 'line6: blablabla\n', 'line7: blablabla\n',

'line8: blablabla\n', 'line9: blablabla\n']

1G: BINARY MODE

with open("C:/temp/test.jpg", 'rb+') as a_file:
 for line in a_file:
 print(line)

2. EXCEPTIONS http://www.diveintopython3.net/your-first-python-program.html#exceptions

- indication that something went wrong

 2A: MOTIVATION

- wrong user input

- preventing expected errors

- handling error messages

- preventing code crashes

 2B: TRY EXCEPT BLOCK

 try - check if code is valid

 except - if code is not valid

without using try except block

 print(4/0) # ZeroDivisionError: division by zero
print('next lines') # not printing anything, code is crashed

using try except block
try:
 print(4/0)
except:
 print('math error') # this is printed

print('next lines') # this is printed also, code is still working

preventing wrong input
number = input('select a number: ')

try:
 number + 5
 print(number + 5)
except:
 print('input is not a number')

index() returns error if element is not in list

 a_list = [5, 1, 6, 7, 3, 2]

for i in range(1,7):
 print('index of ',i, 'is', a_list.index(i))

index of 1 is 1
index of 2 is 5

http://www.diveintopython3.net/your-first-python-program.html#exceptions

index of 3 is 4
ValueError: 4 is not in list

with try-except
a_list = [5, 1, 6, 7, 3, 2]

for i in range(1,7):
 try:
 print('index of ',i, 'is', a_list.index(i))
 except:
 print(i, 'is not in list')

index of 1 is 1
index of 2 is 5
index of 3 is 4
4 is not in list
index of 5 is 0
index of 6 is 2

 2C: ELSE

 else- used with try and except, else will be evaluated if there is no error

 try:

 number = int(input('enter a number:'))
except:
 print('this is not a number')
else:
 print('this is a number')

 2D: FINALLY

 finally - used with try and except, code inside finally block is executed in any case

 try:

 number = int(input('enter a number:'))
except:
 print('this is not a number')
else:
 print('this is a number')
finally

 print('thank you for using our program')

 2E: RAISE

 raise - exits the code with error message

 all error classes https://docs.python.org/3.3/library/exceptions.html#concrete-exceptions

 # raising default error message
 a_list = [5, 1, 6, 7, 3, 2]

https://docs.python.org/3.3/library/exceptions.html#concrete-exceptions

for i in range(1,7):
 try:
 print('index of ',i, 'is', a_list.index(i))
 except:
 print(i, 'is not in list')
 raise # ValueError: 4 is not in list

 # raising defined error message
 a_list = [5, 1, 6, 7, 3, 2]

for i in range(1,7):
 try:
 print('index of ',i, 'is', a_list.index(i))
 except:
 print(i, 'is not in list')
 raise AssertionError('hi there, this is a custom error message')

 raise could be used outside of try-except block

 lucky_number = input('whats your lucky number?:')

if lucky_number.find('7') == -1:
 raise Exception ('this is not a lucky number')
else:
 print('this is a lucky number')

3. BREAK (FOR CYCLES)

 break - ends the iteration

 rainfall_months = [10, 120, 150, 200, 210, 268, 272, 281, 295, 330, 354, 389]

months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov',

'Dec']

rainfall_required = 270
month_required = str()

for mi in range(len(rainfall_months)):
 if rainfall_months[mi] > rainfall_required:
 month_required = months[mi]
 break

print(month_required) # Jul

