Bi7430 Molecular Biotechnology 1. Introductory lecture Organisation of the course Outline  I n t ro d u c t i o n o f c o u rs e  C o n t e n t o f c o u rs e a n d p ra c t i c a l c l a s s e s  L e c t u r i n g a n d e v a l u a t i o n  Re c o m m e n d e d l i te ra t u re  B i o t e c h n o l o g y a t M U  E xc u r s i o n i n L o s c h m i d t L a b o ra t o r i e s Introduction of the course EXTENSIVE MULTIDISCIPLINARITY PREREQUISITES:  basic knowledge of microbiology, molecular biology, biochemistry, immunology and genetics COURSE FOCUSE:  the specific aspects of modern biotechnology  examples of up to date applications and discoveries (industry, agriculture, pharmacy, biomedicine and environmental protection)  the role of modern biotechnology in sustainable living Sustainability  concept of sustainability with the aim to promote a necessary “… development that meets the needs of the present without compromising the ability of future generations to meet their own needs” World Commission on Environment and Development, 1987  reduce waste production and environmental impact  reduce consumption of resources (e.g., materials, energy, air, water)  increase the recycling and use of renewable materials (e.g., biomass) Sustainability Biotechnology  KEY TECHNOLOGY of 21st century ENVIRONMENTAL ASPECTS  natural processes (bioprocesses)  sustainable and resource efficient ECONOMICAL ASPECTS  1/3 of worldwide production derived from bioprocesses in 2030  biotechnology market 300 billion EUR* Route to the Knowledge-Based Bioeconomy, 2007 Example of sustainable technology BIOCATALYSIS (+30°C) 1000 t penicillin G 45 t ammonia 10,000 m3 water 1 t ENZYME (1 $/kg 6-APA) CHEMICAL PROCESS (-40°C) 1000 t penicillin G 160 t ammonia 300 t dimethylchlorosilane 800 t N,N-dimethylaniline 600 t phosphopentachloride 4,200 m3 dichloromethane 4,200 m3 n-butanol  hy d r o l y s i s o f p e n i c i l l i n G LECTURES Organization info Content of the course 2. Basics of Molecular Biotechnology 3. Methods of Gene Manipulations 4. Protein Engineering 5. Microfludics, Lab on a Chip 6. Biofuels 7. Molecular Biotechnology in Industry 8. Environmental Molecular Biotechnology 9. Molecular Biotechnology in Agriculture 10. Molecular Biotechnology in Medicine I. 11. Molecular Biotechnology in Medicine I I. METHODOLOGICAL LECTURES TECHNOLOGICAL LECTURES Lecturers Doc. RNDr. Zbyněk Prokop, Ph.D. (UČO 23696)  protein engineering, microfluidics  biotechnological applications  Loschmidt Laboratories, lea der of research team  co-founder of Enantis – 1st biotech spin-off at MU Mgr. Sarka Bidmanova, Ph.D. (UČO 77580)  bioanalytical devices for military and environment  immobilization and characterization of enzymes  Enantis and Loschmidt Laboratories, research specialist Mgr. Táňa Koudeláková, Ph.D. (UČO 39790)  molekulární biologie a proteinové inženýrství  řízená evoluce, enzymové biotechnologie  Loschmidt Laboratories, research specialist Instructions  bring printed copy of the slides as handouts for notes Instructions  bring printed copy of the slides as handouts for notes  find all materials including printed version of the slides at http://is.muni.cz/  be on time, come at least 5 min before lecture starts  please,contact me if any problem with the lecture or material  be active and participate in discussions Lecturing system  powerpoint slides as well as recommended literature in English  lecturing, discussions and examination in Czech  2 hrs per week  lecture part I. (45 min) BREAK (5 -10 min) lecture part II. (45 min) Activities and Evaluation  reading the original literature  review or book chapter for each lecture  „Lecture 02 (READING).pdf“  four progress written tests during the lecturing period  at the beginning of lecture 4., 6., 8., and at the end of semester  each 10-12 questions from lectures and reading  questions a,b,c,d type, can be cumulative with multiple answers  duration 10 min  final written test during examination period  50 questions from entire course / 1 hour Recommended literature  M. Wink (Ed.) 2011: An Introduction to Molecular Biotechnology : Fundamentals, Methods and Applications, 2nd Edition, Willey-Blackwell  B. R. Glick, J. J. Pasternak, C. L. Patten 2011: Molecular Biotechnology: Principles and Applications of Recombinant DNA , 4th Edition, ASM Press  J. M. Walker, R. Rapley 2009: Molecular biology and biotechnology, 5th Edition, RSC Publishing  A. Sonnino (Ed.) 2011: IntroductIon to molecular biology and genetic engineering, Food and Agriculture organization of the united Nations, Rome (pdf on IS materials) PRACTICAL LESSONS Organization info Content of the course 1. Design of recombinant systems (LL, MU) 2. Preparation and testing of microfluidic chip (LL, MU) 3. Fermentation of recombinant microorganisms (LL, MU) 4. Preparation of enzymatic biosensor (Enantis) 5. Biodegradation of environmental pollutant by recombinant bacterium (LL, MU) 6. Biocatalytic preparation of pharmaceutical precursor (Enantis) 7. Preparation and transformation of liposoms (VRI) 8. Analysis of liposoms by DLS, TEM etc. (VRI) Instructors Loschmidt laboratories, MU Táňa Koudeláková, Ph.D. (UČO 39790) Lukáš Chrást, M.Sc. (UČO 269981) Tomáš Buryška, M.Sc. (UČO 323660) Enantis, Ltd. Šárka Bidmanová, Ph.D. Veronika Štěpánková, Ph.D. Veterinary Research Institute PharmDr. Josef Mašek, Ph.D. Ing. Štěpán Koudelka, Ph.D. MVDr. Pavel Kulich, Ph.D. RNDr. Jana Plocková Lecturing system  INTERACTIVE SYNOPSIS available on IS  2 hrs per week (STARTS on Wednesday 12/10, A13 entrance 2.floor)  CAPACITY: two groups of 10 students (10:00 – 12:00, 14:00 – 16:00)  LANGUAGE: materials EN, spoken language CZ, protocols and essays either EN or CZ  ABSENCE (max. 1): official excuse in IS + substitute activity - written essay EN or CZ, two A4 pages, 1.5 spaced, TNR 12 (template on IS)  LECTURE ORGANISATION  assignment (HOMEWORK)  theoretical introduction given by lecturer  experimental work in the laboratory  protocol submitted in one week after each practical (template on IS) Loschmidt Laboratories, MU B I O C ATA LY S I S B I O D E G R A D AT I O N B I O S E N S I N G Protein and metabolic engineering Koudelakova et al. 2012. Biotech. J. Biocatalysis Prokop, Z., et al. 2004. WO 2006079295 D r u g s F e r o m o n e s B r a d y r h i s o b i u m j a p o n i c u m Prokop, Z., et al. 2010. Angew. Chem. 49: 6111–6115 Biodegradation Prokop, Z., et al. 2005. WO 2006128390 Prokop, Z., et al. 2006. Biotech. J. 1: 1370-1380 S p h i n g o b i u m j a p o n i c u m Cl Cl Cl Cl Cl Cl Biodegradation  1 , 2 , 3 - t r i c h l o r o p r o p a n e ( TC P )  c h e m i c a l b u i l d i n g b l o c k , f u m i ga n t , s o l v e n t  p e rs i s t e n t w a t e r a n d s o i l c o n t a m i n a n t  t ox i c , c a rc i n o g e n i c Biodegradation R h o d o c o c c u s A g r o b a c t e r i u m h a l o a l k a n e d e h a l o g e n a s e e p o x i d e h y d r o l a s e h a l o a l c o h o l d e h a l o g e n a s e E s c h e r i c h i a r D N A Biodegradation Pavlova, et al. 2009. Nature Chem. Biol. 5: 727-733 Dvorak, et al. 2014. ChemBioChem. 15: 1891-1895 p r o t e i n e n g i n e e r i n g m o d e l l i n g Immobilization of pathway Dvorak, et al. 2014. ACS Environ. Sci. Tech. DOI 10.1021/es500396r  L e n t i K a t s ® - p o l y v i n i l a l c o h o l p a r t i c l e s  C L E A ® - c ro s s - l i n ke d e n z y m e a g re ga t e s Immobilization of pathway Dvorak, et al. 2014. ACS Environ. Sci. Tech. DOI 10.1021/es500396r  p a c ke d b e d re a c t o r  c o l u m n 1 ( 5 0 m l , D h a A )  c o l u m n 2 ( 1 0 0 m l , H h e C + E c h A )  2 . 5 m o n t h s a t 2 2 ° C  9 7 % e f f i c i e n c y fo r TC P  9 . 7 g o f TC P d e g ra d e d i n t o t a l Biodegradation Kurumbang, et al. 2014. ACS Synth. Biol. 3: 172–181  o p t i m i ze d s y n t h e t i c p a t h w ay a s s e m b l e d i n E . c o l i  p a i rs o f d u e t v e c t o rs ( p E T D u e t , p C D F, p A C YC ) t r a n s f o r m a t i o n Biosensing Bidmanova, et al. 2010. Anal. Bioanal. Chem. 398:1891–1898 Modern Biotechnology at MU R e s e a r c h D e v e l o p m e n t A p l i c a t i o n s E d u c a t i o n Molekulární biotechnologie Bi7430  Období: podzim (každoročně)  Rozsah: přednáška 2 hodiny/týden, cvičení 2 hodiny/týden  Přednášky: Doc. Prokop, Dr. Koudeláková, Dr. Bidmanová  Cvičení: Dr. Bidmanová, Dr. Koudeláková, Dr. Štěpánková, Mgr. Buryška, Mgr. Chrást  Osnova:  proteinové a metabolické inženýrství  genetické inženýrství rostlin a živočichů  molekulární diagnostika a moderní vakcíny  buněčná a genová terapie a regenerativní medicína  molekulární biotechnologie v průmyslu a zemědělství Proteinové inženýrství Bi7410  Období: jaro  Rozsah: přednáška 1 hodina/týden  Vyučující: Mgr. Radka Chaloupková, Ph.D.  Osnova:  strukturně-funkční vztahy proteinů  metody exprese a purifikace rekombinantních proteinů  metody strukturní a funkční analýzy proteinů  racionální design, semi-racionální design a řízená evoluce  příklady využití proteinového inženýrství Bioinformatika Bi5000+Bi9060+Bi9061  Období: podzim  Rozsah: přednáška 2 hodiny/týden, cvičení 2 hodiny/týden  Vyučující: prof. Mgr. Jiří Damborský, Dr., doc. RNDr. Roman Pantůček, Ph.D.,  Osnova:  bioinformatické databáze a jejich prohledávání  analýza nukleotidových a proteinových sekvencí  hledání a identifikace genů  analýza a předpověď struktury proteinů Strukturní biologie Bi9410  Období: podzim  Rozsah: přednáška 2 hodiny/týden, cvičení 2 hodiny/týden  Vyučující: Mgr. David Bednář  Osnova:  struktura, stabilita a dynamika biologických makromolekul  makromolekulární interakce a komplexy  stanovení a předpověď struktury, identifikace důležitých oblastí  stanovení vlivu mutace na strukturu a funkci proteinu  aplikace v biologickém výzkumu, návrhu léčiv a biokatalyzátorů