

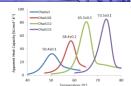
4. Protein Engineering

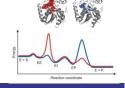
Bi7430 Molecular Biotechnology

Outline Limitations of proteins in biotechnology processes Definition and aim of protein engineering Targeted properties of proteins Basic approaches in protein engineering DIRECTED EVOLUTION RATIONAL DESIGN SEMI-RATIONAL DESIGN

■ Examples

Proteins in biotechnology availability of optimal protein for specific process HOW TO OBTAIN OPTIMAL PROTEIN? traditional biotechnology - adapt process modern biotechnology - adapt protein Available protein Available protein Dream Process Dream Process

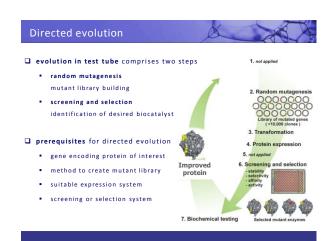


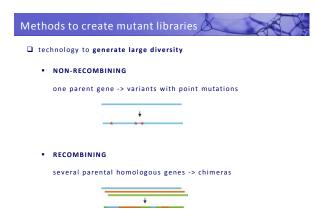

Proteins in biotechnology

- the process of constructing novel protein molecules by design first principles or altering existing structure
- use of genetic manipulations to alter the coding sequence of a gene and thus modify the properties of the protein
- AIMS AND APPLICATIONS
 - technological optimisation of the protein to be suitable in particular technology purpose
 - scientific desire to understand what elements of proteins contribute to folding, stability and function

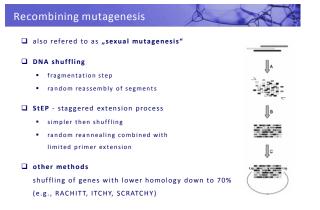
Targeted properties of proteins

- ☐ structural properties of proteins
 - stability (temperature, solvents)
 - tolerance to nH, salt
 - resistance to oxidative stress
- ☐ functional properties of proteins
 - reaction type
 - substrate specificity and selectivity
 - kinetic properties (e.g., $K_{\rm m}$, $k_{\rm cat}$, $K_{\rm i}$)
 - cofactor selectivity
 - protein-protein or protein-DNA interactions

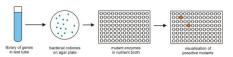




RATIONAL DESIGN 1. Computer aided design 2. Site-directed mutagenesis Individual mutated gene 3. Transformation 4. Protein expression 5. Protein purification 6. not applied Improved protein Timproved protein


Directed evolution

- lacktriangledown directed evolution techniques emerged during mid-1990s
- ☐ inspired by natural evolution
- lacksquare this form of "evolution" does not match what Darwin had envisioned
 - requires outside intelligence, not blind chance
 - does not create brand new species, macroevolution, but only improvements of molecules, molecular evolution
 - does not take millions of years, but happens rapidly



- ☐ most critical step of direct evolution
- ☐ isolation of positive mutants hiding in library
 - HIGH THROUGHPUT SCREENING

individual assays of variants one by one

DIRECT SELECTION

display techniques (link between genotype and phenotype)

(Utra) High throughput screening

☐ agar plate (pre)screening

☐ microtiter plates screening

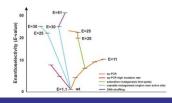
- 96-, 384- or 1536-well formate
- robot assistance (colony picker, liquid handler)
- 10⁴ libraries
- volume 10 100 uL

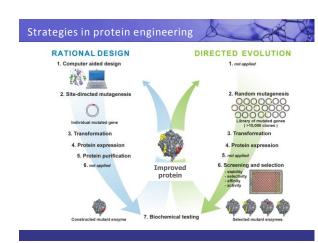
☐ microfluidic systems

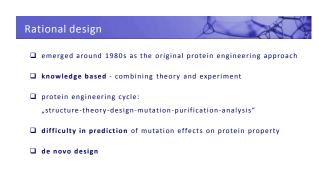
- water in oil emulsions (up to 10 kHz)
- FACS sorting (10⁸ events/hour)
- 10⁹ libraries
- volume 1 10 pL

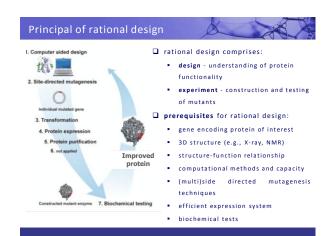
Direct selection □ not generally applicable (mutant libraries >10⁶ variants) lacksquare link between genotype and phenotype ☐ display technologies

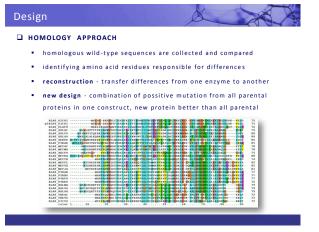
- ribosome display phage display
- ☐ life-or-death assay
- auxotrophic strain
 - toxicity based selection




Example of Directed evolution



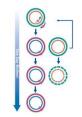

- ☐ directed evolution of enantioselectivity
 - lipase from P. aeruginosa (E-value improved from 1.1 into 51)
 - spectrophotometric screening of (R)- and (S)-nitrophenyl esters
 - 40 000 variants screened
 - the best mutant contains six amino acid substitutions



Design

☐ STRUCTURE-BASED APPROACH

- prediction of enzyme function from structure alone is challenging
- protein structure (X-ray crystallography, NMR, homology models)
- molecular modelling
 - o molecular docking
 - o molecular dynamics
 - o quantum mechanics/molecular mechanics (QM/MM)



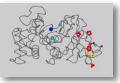
Construction

- ☐ site-directed mutagenesis
 - introducing point mutations
- multi site-directed mutagenesis

☐ gene synthesis

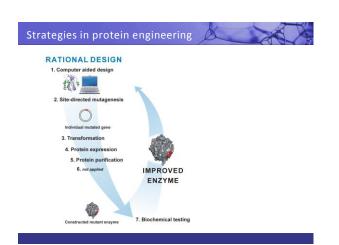
- commercial service
- codone optimisation

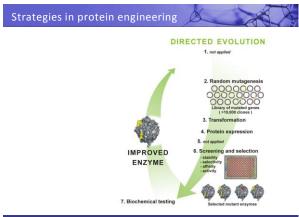
Example of rational design

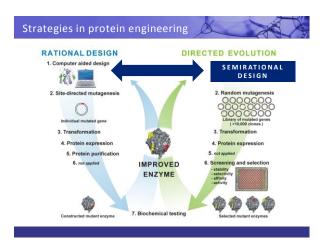


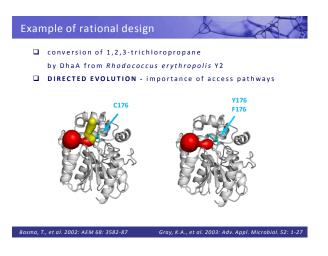
- ☐ rational design of protein stability
 - stability to high temperature, extreme pH, proteases etc.
 - stabilizing mutations increase strength of weak interactions
 - o salt bridges and H-bonds Eijsink et al., Biochem. J. 285: 625-628, 1992
 - S-S bonds
 Matsumura et al., Nature 342: 291-293, 1989
 - o addition of prolines Watanabe et al., Eur. J. Biochem. 226: 277-283, 1994
 - o less glycines Margarit et al., Protein Eng. 5: 543-550, 1992
 - o oligomerisation
 Dalhus et al., J. Mol. Biol. 318: 707-721, 2002

Example of rational design

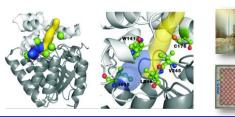


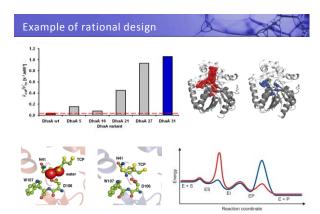

- engineering protein to resist boiling
 - reduced rotational freedom Thr56Ala, Gly58Ala, Ser65Pro and Ala96Pro
 - introduction of disulfide bridge Gly8Cys + Asn60Cys
 - improved internal hydrogen bond Ala4Thr
 - filling cavity Tyr63Phe




Half-lifes (min.)	80°C	100°C
wild type	17.5	>0.5
8-fold mutant	stable	170

Burg, B., et al., 1998. PNAS 95: 2056-2060





Example of rational design

- lacksquare conversion of 1,2,3-trichloropropane by DhaA from Rhodococcus erythropolis Y2
- $\hfill \Box$ \hfill \hfill DIRECTED EVOLUTION importance of access pathways
- ☐ library of **5,300 clones** screened

Pavlova, M., Klvana, M., Prokop, Z., et al. 2009: Nature Chem. Biol. 5: 727-733