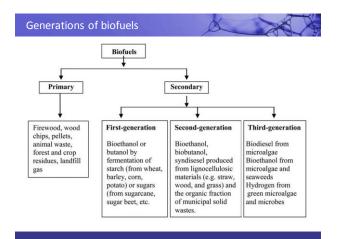
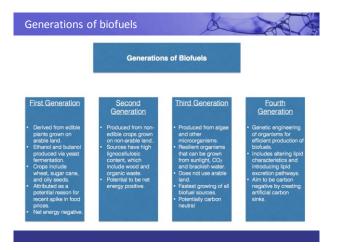
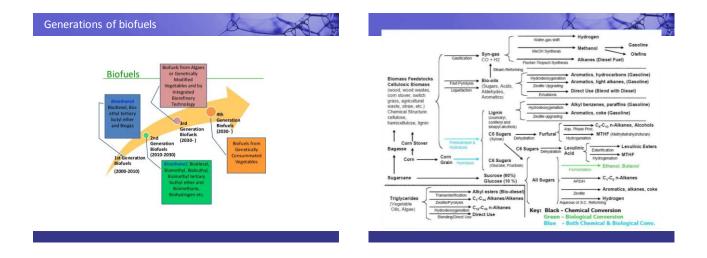


6. Lecture - Biofuels



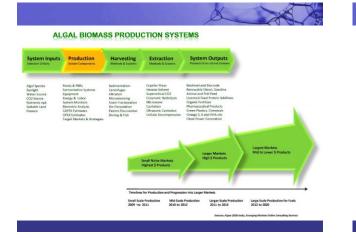

Bi7430 Molecular Biotechnology

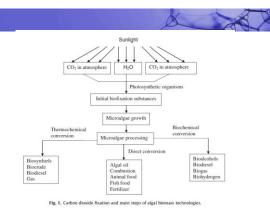

Biofuels

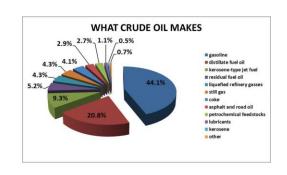
- Alternatives to fossil fuels (crude oil, coal,...)
- Plant and animal biomass
- Primary biofuels like wood or crop waste used since ancient ages
- Most of the currently used biofuels are plant-based
- Algae and bacteria are promising sources of biofuels for the future

Biofuels in the world

- a and
- Vast majority of the biofuels production is based in the US, Brazil and Europe




Why are biofuels important?

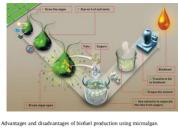

- Renewable sources of energy
- Lowering of carbon emissions
- Lower energy demands than 'traditional' processes

X

- Biomass can be used for extraction of biologically active compounds and as biofuel
- Waste is biodegradable or can be used further

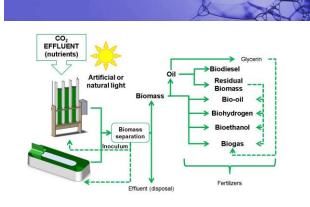
X

as


Crude oil consumption

Algae as biofuels sources

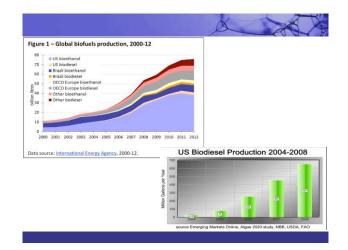
Advantages

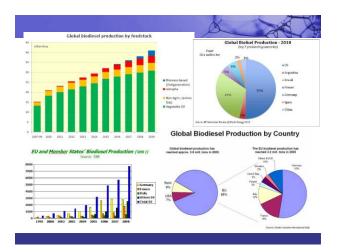

High growth rate Less water demand than land crops High-efficiency CO₂ mitigation More cost effective farming

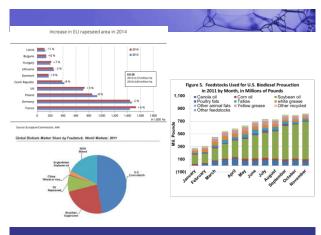
AS X

Disadvantages

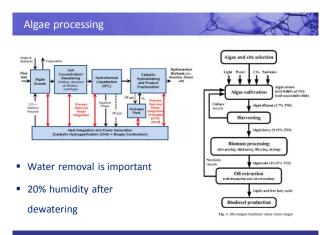
Low biomass concentration Higher capital costs

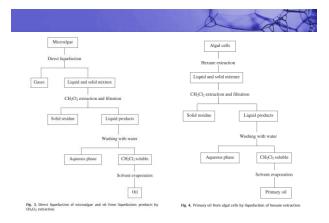

emical compositions of alga	e on a dry i	matter basis (%).		
Species of sample	Proteins	Carbohydrates	Lipids	Nucleic acid
Scenedesmus obliquus	50-56	10-17	12-	3-6
			14	
Scenedesmus quadricauda	47	-	1.9	-
cenedesmus dimorphus	8-18	21-52	16-	-
			40	
Chlamydomonas rheinhardii	48	17	21	-
Chlorella vulgaris	51-58	12-17	14- 22	4-5
Chlorella pyrenoidosa	57	26	2	-
Spirogyra sp.	6-20	33-64	11- 21	
Dunaliella bioculata	49	4	8	-
Dunaliella salina	57	32	6	-
Euglena gracilis	39-61	14-18	14- 20	-
Prymnesium parvum	28-45	25-33	22- 38	1-2
Tetraselmis maculata	52	15	3	-
Porphyridium cruentum	28-39	40-57	9-14	-
pirulina platensis	46-63	8-14	4-9	2-5
Spirulina maxima	60-71	13-16	6-7	3-4.5
Synechoccus sp.	63	15	11	5
Anabaena cylindrica	43-56	25-30	4-7	-

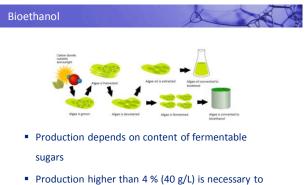

-


Biodiesel


X XX


- Methylesters of unsaturated fatty acids
- Better biodegradability than fossil-based diesel
- High energy capacity
- Can corrode the engine parts
- Higher health hazard than fossil fuels
- In the EU 5 % of biodiesel has to be mixed with liquid fossil fuels





			A	
Comparison of microalgae with other bio	diesel feedstocks.			
Plant source	Seed oil content (% oil by wt in biomass)	Oil yield (L oil/ha year)	Land use (m ² year/kg biodiesel)	Biodiesel productivity (kg biodiesel/ha year)
Corn/Maize (Zea mays L.)	44	172	66	152
Hemp (Cannabis sativa L)	33	363	31	321
Soybean (Glycine max L)	18	636	18	562
atropha (Jatropha curcas L)	28	741	15	656
Camelina (Camelina sativa L.)	42	915	12	809
Canola/Rapeseed (Brassica napus L)	41	974	12	862
Sunflower (Helianthus annuus L)	40	1070	11	946
Castor (Ricinus communis)	48	1307	9	1156
Palm oil (Elaeis guineensis)	36	5366	2	4747
dicroalgae (low oil content)	30	58,700	0.2	51,927
Microalgae (medium oil content)	50	97,800	0.1	86,515
Microalgae (high oil content)	70	136.900	0.1	121.104

Yields of bio-oil by pyrolysis from alga samples at different temperatures (K).

Sample	575	625	675	725	775	825	875
Cladophora fracta			33.2	43.4	48.2	46.8	44.6
Chlorella protothecoides	12.8	27.4	38.4	50.2	55.3	53.7	51.6

Table 1 Comparative s	tudy between algal biomass and terrestrial plants for biodiesel productio	n.	
Feedstock	Conditions	Biodiesel	Reference
ALGAE			
Spirulina platensis	Reaction temperature 55°C, 60% catalyst concentration, 1:4 algae biomass to methanol ratio, 450 rpm stirring intensity	60 g/kg lipid	Nautiyal et al. (2014)
Nannochloropsis sp.	Oil extraction with n-hexane, acidic transesterification	99 g/kg lipid	Susilaningsih et al. (2009)
Scenedesmus sp.	Alkaline (NaOH), temperature of 70°C	321.06 g/kg lipid	Kim et al. (2014)
	Acidic (H ₂ SO ₄) catalyst, temperature of 70°C	282.23 g/kg lipid	
Nannochloropsis salina	Freeze drying of biomass, extraction with chloroform-methanol (1:1 ratio), alkali transesterification	180.78 g/kg lipid	Muthukumar et al. (2012)
Chlorella marina		100 g/kg lipid	
TERRESTRIAL PLANTS	1		
Madhuca indica	$\begin{array}{l} 0.30\text{-}0.35(\text{w/v})\;\text{methanol-to-oil ratio, }1\%\;(\text{w/v})\;\text{H}_2\text{SO}_4\;\text{as acid catalyst, }0.25\;\\ \text{(w/v)}\;\text{methanol, }0.7\%\;(\text{w/v})\;\text{KOH as alkaline catalyst} \end{array}$	186.2 g/kg lipid	Ghadge and Raheman (2005
Pongamia pinnata	Transesterification with methanol, NaOH as catalyst, temp. 60°C	253 g/kg lipid	Mamilla et al. (2011)
	Acid-catalyzed esterification by using 0.5% H ₂ SO ₄ , alkali-catalyzed transesterification	193.2 g/kg lipid	Naik et al. (2008)
Azadirachta indica	Reaction time of 60 min, 0.7% H ₂ SO ₄ as acid catalyst, reaction temperature of 50°C, and methanol: oil ratio of 3:1	170 g/kg lipid	Awolu and Layokun (2013)
Soybean	Hydrotalcite as basic catalyst, methanol/oil molar ratio of 20:1, reaction time of 10 h	189.6 g/kg lipid	Martin et al. (2013)

make the proces economically feasible

Table 1. Comparison of the productivities of lignocellulosic biomass	
and seaweeds	

and seaweeds		
Biomass	Productivity [dry g/(m²·year)]	Reference
Lignocellulosic biomass		
Switchgrass	560-2,240	65
Corn stover	180-790	65
Eucalyptus	1,000-2,000	65
Poplar	300-612.5ª	66
Willow	46-2,700	67
Seaweeds		
Green seaweeds	7,100 ^b	19, 20
Brown seaweeds	3,300-11,300	21
Red seaweeds	3,300-11,300	21
^a Mean value calculated from ^b calculated value.	the amount of biomass pro	duced for 8 y;

Bioethanol production

- Cells are pretreated using acid or enzymatic hydrolysis
- Hydrothermal pretreatment may be applied
- Ethanol fermentation by bacteria or yeast
 - Saccharomyces cerevisiae
 - or technical cultures
- Mannitol cannot be converted by S. cerevisiae

Organism	Natu	ral sugar	utilizati	on path	ways*)	Major p	roducts ^{b)}	т	olerance	e ^{c)}	O2 neededd)	pН
	Glu	Man	Gal	Xyl	Ara	EtOH	Other	Alcohols	Acids	Hydrolysate	,	
Anaerobic bacteria	+	+	+	+	+	+	+	-	-	-	-	Neutr
Escherichia coli	+	+	+	+	+	-	+	-	-	-	-	Neutr

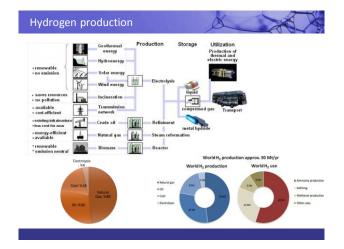
a) or formatation continue.			and the late									
Filamentous fungi	+	+	+	+	+	+	-	++	++	++	-	Acidic
Pichia stipitis	+	+	+	+	+	+	-	-	-	-	+	Acidic
Saccharomyces cerevisiae	+	+	+	-	-	+	-	++	++	++	-	Acidic
Zymomonas mobilis	+	-	-	-	-	+	-	+	-	-	-	Neutral
Laurierreine con	-	-	-	-	-		-					1 COLUMN

(s); -: Minor te; +: Moder) ce; --: Poor toleran

Hydrolysis type	Hydrolysis source	Fermentation Mode ^{a)}	Algae species	Algae type	Yield (g ethanol/g algae)	Reference
Acid	HCI/ MgCl ₂	SHF	Chlorella sp.	Micro	0.47	[36]
Alkaline	NaOH	SHF	Chlorococcum infusionum	Micro	0.261	[10]
Chemical	H2SO4	SHF	Chlorococcum humicola	Micro	0.48	[9]
Chemical ^{b)}	H ₂ SO ₄	SHF	Chlorella vulgaris	Micro	0.233	[61]
Chemo- enzymatic ^{c)}	HCl/ H ₂ SO ₄ + amyloglucosidase + endocellulase + β-glucosidase	SHF	Dunaliella tertiolecta	Micro	0.14	[46]
Enzymatic	α -amylase + amyloglucosidase	SHF	Chlamydomonas reinhardtii	Micro	0.235	[18]
Enzymatic	endoglucanase + β-glucanase + amyloglucosidase	SSF	Laminaria japonica	Macro	0.196	[38]
Enzymatic ^{b)}	cellulase + amylase	SHF	C. vulgaris	Micro	0.178	[61]
Enzymatic ^{d)}	cellulase + β-glucosidase	SHF	Gracilaria verrucosa	Macro	0.43	[14]
Enzymatic ^{e)}	cellulase + β-glucosidase	SSF	Saccharina japonica	Macro	0.111	[31]
Enzymatic ^{b)}	cellulase + Amylase	SSF	C. vulgaris	Micro	0.214	[61]
Physical ^{c)}	supercritical CO,	SHF	Chlorococum sp.	Micro	0.383	[45]

X

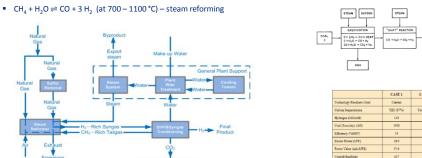
b) Sonicated algal biomass was utilized c) Lipid-extracted algal biomass was utilized d) Agar pulp was extracted after alkali treatment and hydrolyzed A Algal biomass received extremely low acid pretreatment.

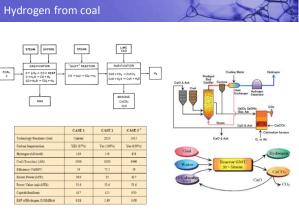

	AT	
X		X
p	AN-	19

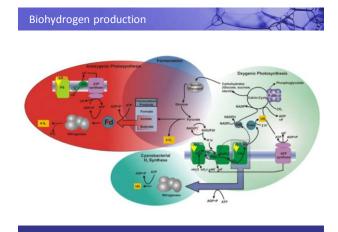
Biomass	Polysaccharides	Sugar		Reference
Green seaweed	Glucan	Glucose	5. cerevisiae	15, 27
	Ulvan	Xylose	Xylose-fermenting yeast	39
			Xylose-utilizing 5. cerevisiae,	37
			Ethanologenic E. coli	38
		Glucuronic acid	P. tannophilus	35
			Ethanologenic E. coli.	36
Brown seaweed	Glucan	Glucose	S. cerevisiae	10, 15
			P. angophorae	45
			Ethanologenic E. coli KO11	44
			Ethanologenic E. coli BAL1611	51
	. A.	Mannitol	P. angophorae	45
			Ethanologenic E. coli KO11	44
			Ethanologenic E. coli BAL1611	51
	Alginate	Uronic acid	Ethanologenic Sphingomonas sp. A1	50
			Ethanologenic E. coli BAL BAL1611	51
Red seaweed	Glucan	Glucose	5. cerevisiae	15, 56, 58, 60, 6
	Agar, Carrageenan	Galactose	5. cerevisiae	15, 56, 58, 60, 6
		3.6-anhydrogalactose	NR ^b	

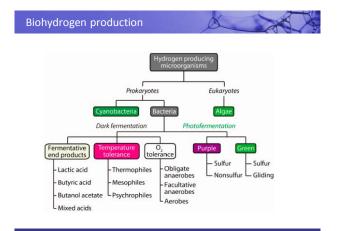
*Mannitol is not a polysaccharides, but a major sugars in brown seaweeds; *ethanol production from 3,6-anhydrogalactose has not been reported.

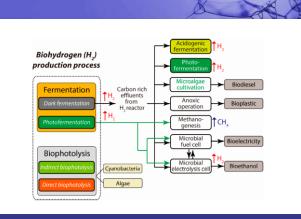
ligal feedstock	Type of algae	Pretreatment and saccharification	Fermenting organism, time and mode	Yield (reported)	Yield (normalised to g EtOH/g dry weight)	Refs.
Thiorococum sp.	Micro	Supercritical CO $_2$ lipid extraction at 60 $^{\circ}\mathrm{C}$ and 400 mL/min CO $_2$	Saccharomyces bayanus SHF, 60 h	3.83 g Ethanol from 10 g of lipid-extracted microalgae debris	38.30%	[49]
Thiorococcum infusionum	Micro	0.75% (w/v) NaOH at 120 °C for 30 min	Saccharomyces cerevisiae SHF, 72 h	0.26 g Ethanol/g algae	26.00%	[52]
hlamydomonas reinhardtii UTEX 90	Micro	3% H ₂ SO ₄ at 110 °C for 30 min	Saccharomyces cerevisiae S288C, SHF, 24 h	0.291 g Ethanol/g algae	29.10%	[39]
hlamydomonas reinhardtii UTEX 90	Micro	o-amylase (90 °C, 30 min) and glucoamylase (55 °C, 30 min)	Saccharomyces cerevisiae S288C, SSF, 40 h	0.235 g Ethanol/g algae	23.50%	[16]
Thlorella vulgaris	Micro	3% H ₂ SO ₄ at 110 °C for 105 min	Escherichia coli SJL2526, SHF, 24 h	0.4 g Ethanol/g algae	40.00%	[40]
ichizochytrium sp.	Micro	Hydrothermal fractionation and x-amylase at 13,000 AAU/g-glucan and glucoamylase 660 GAU/g-glucan	Escherichia coli KO11, SSF, 72 h	11.8 g/L of Ethanol from 25.7 g/L of glucose	5.51%	[44]
lappaphycus alvarezii	Macro	0.9 N H ₂ SO ₄ at 120 °C for 60 min	Saccharomyces cerevisiae NCIM 3455, SHF, 96 h	92.3% Theoretical conversion	15.4%	[34]
Cappaphycus alvarezii	Масто	0.2% $\rm H_2SO_{4}$ at 130 $^{\circ}\rm C$ for 15 min	Saccharomyces cerevisiae SHF, 24h	1.7 g/L	1.31%	[35]
racilaria solicornia	Macro	2% $\rm H_2SO_4$ at 120 $^\circ\!C$ f or 30 min and cellulase at 40 $^\circ\!C$	Escherichia coli KO11, SHF, 48 h	79.1 g Ethanol/1 kg	7.90%	[42]
elidium elegans	Масто	Meicelase treatment 50 °C for 120 h pH 5.5	Saccharomyces cerevisiae IAM 4178, SHF, 48h	5.5% Ethanol in fermentation broth	36.7% * (dry weight approximated)	[41]
sagamianum		Thermal liquification at 200 °C and 15 MPa for 15 min.	Pichia stipitis CBS 7126, SHF, 48 h	84.3% of Theoretical value	10.0%	[43]
aminaria Joponica	Macro	0.1 N HCL 121 °C for 15 min and Celluclast 1.5 L. Viscozyme L, 50 °C on 150 rpm for saccharification	Escherichia coli KO11, SSF, 72 h	0.4 g Ethanol/g of sugars	16.1%	[36]
aminaria hyperborea	Macro	Cutting and washing in water pH 2 at 65 °C	Pichia angophorae, SHF, 48h	0.43 g Ethanol/g sugar	0.86%" (dry weight approximated)	[37]
laccharina latissima (Laminaria hyperbarea)		Shredding and Jaminarinase treatment for saccharfication	Saccharomyces cerevisiae Ethanol Red, SSF, 48 h	0.45% (v/v)	0.47%	[38]
aminaria digitata		Shredding and laminarinase treatment for saccharfication	Pichia angophorae, SSF, 96 h	167 ml, Ethanol/kg algae	13.2%	[51]
aminaria japonica	Macro	Floating residues from alginate industry treated with 0.1 M H ₂ SO ₆ at 121 °C, 1 h and cellulase, cellobiase	Saccharomyces cerevisiae, SHF, 36 h	0.143 L Ethanol from 1 kg floating residues	11.3%	[48]
aminaria japonica	Масто	Grinding of dry biomass and autoclaving at 120 °C for 15 min	Pichia stipitis KCTC7228	2.9 g/L Ethanol using 100 g/L algae	2.9%	[53]

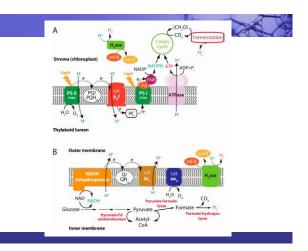

Table 4. Bioethanol production from Fermentation Algal feedstock Type n from SSF and SHF tested on various algal strains tock Hydrolysis Bioethanol Reference Yield Fermentation Source Treatment conditions Source Process conditions Saccharomyces cerevisiae 100 rpm and 40°C for 30 h 30°C in desktop fermentation 0.194 g ethanol/g [99] algae 0.214 g ethanol/g [61] algae Chlamydomonas Glutase fasciata 40°C for 30 min Zymomonas mobilis 200 rpm and 45°C (SSF) Chlorella vulgaris Cellulase + Amylase Simultaneous Saccharific and Fermentation (SS 37°C at 150 rpm Escherichia coli 150 rpm and 37°C 0.055 g ethanol/g [44] for 24 h Schizocytrium sp. Amylase agae 150 rpm and 37°C 0.4 g ethanol/g [39] carbohydrate 200 rpm and 7.7 g ethanol/ [55] 30°C for 13 h L algae hydrolysate Laminaria japonica Saccharina japonica Sulfuric acid 121°C for 15 min E. coli Bacillus 200 rpm and Pichia licheniformis 30°C for 7.5 days angopho C. vulgaris Cellulase + 200 rpm and 45°C Z. mobilis Amylase [61] 30°C in desktop fermentation 0.178 g ethanol/g algae ntation 30°C in desktop fermentation Sulfuric acid 121°C for 20 min. Z. mobilis 0.233 g ethanol/g [61] C. vulgaris 0.14 g ethanol/g [46] algae HCl/H,SO₄ 121°C for 15 min S. cerevisiae + cellulase + amylo-glucosidase Dunaliella tertiolecta 200 rpm and 30°C for 12 h e Hydrolysis and F (SHF) Gelidium amansii Scenedesmus abundans Sulfuric acid 150°C and 3.0-3.5 bar pressure custersii 150 rpm and 30°C 27.6 g ethanol/ [53] L algae hydrolysate 3.5 bar pressure custersu Cellulase 37°C for 30 min 5. cerevisiae 200 rpm and 30°C for 48 h 0.103 g ethanol/ [60] g algae 0.143 L ethanol/ [47] Separate 30°C for 48 h Cellulase + 150 rpm and S. *cerevisiae* 30°C for 36 h Cellubiose 50°C for 48 h L. japonica kg algae

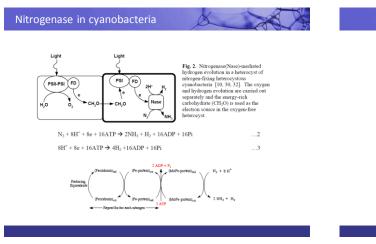



Hydrogen production from natural gas




Separated and (for the CC Op

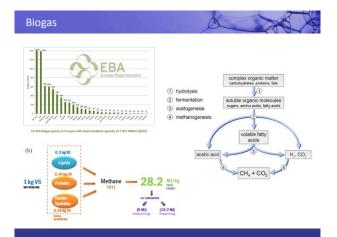


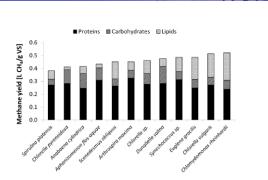


Organism	Maximum evolution rate (mmol/g /hr) ⁸	Maximum productivity (mmol/L/hr) ^b (kJ/L/hr) ^b	Gas for growth; Light intensity (w/m ²) ^c	Gas for H evolution; Light intensity (w/m ²) ^e	Ref	
Anabaena cylindrica	1.33	0.93 (0.22)	99.7% air 0.3% CO ₂ ; 20	97% Ar 3% CO ₂ ; 60	[38]	
Anabaena variabilis	0.7	0.085 (0.02)	25% N ₂ 2% CO ₂ 73% Ar; 20	5% N2 2% CO2 93% A4: 20	[39]	
Anabaena variabilis PK84	3.06	0.35 (0.08)	25% N ₂ 2% CO ₂ 73% Ar; 20	5% N2 2% CO2 93% Ar; 20	[39]	
Anabaena variabilis PK84	0.21	0.26 (0.06)	98% air 2% CO3; 72 (L/D) ⁴	98% air 2% CO2; 72 (L/D) ^d	[40]	
Anabaena AMC414	(12)*	0.084 (0.02)	98% air 2% CO ₂ . 48	98% air 2% CO ₂ ; 99	[28]	
Gloebacter PCC7421	(1.38)*	•	Air; 4	Ar/CO/C2H2; 4-6	[29]	
Synechococcus PCC602	(0.66) ^a		Air; 4	Ar/CO/C2H2; 4-6 or dark	[29]	
Aphanocapsa montana	(0.4)*	•	Air; 4	Ar; 4-6	[29]	
b. Hydrogen including the energy 25 °C.	productivity per the time and spa- productivity (k)	liquid volume of pl ce required for cell p /L/hr) based on th	per gram of dry cell notobioreactor during prowth and enzyme i e heat of combusic	hydrogen evolution nduction. The value	stage, not in blankets is 4 kJ/mmol) at	

1	1	\rightarrow
X		An
		- X

Organism	Maximum hydrogen evolution (mmol/g Chl/hr) ^a	Maximum hydrogen productivity (mmol/L/hr) ^b (kJ/L/hr) ^b	Gas for growth; Carbon source; Light intensity (w/m ²) ^e	H ₂ evolution medium; Light intensity (w/m ²) ^c	Ref
Chlamydomona s reinhardtii cc124	5.94	0.094 (0.022)	97% air 3% CO ₂ ; Acetate (17mM); 43	Argon; S-free acetate (17mM); 65	[54]
Platymonas subcordiformis	(0.001) ^a	0.002 (0.0005)	Air; Seawater nutrients; 22(L/D) ^d	N ₂ ; S-free seawater; 35	[46]
Chlamydomona s reinhardtii cc1036	5.91	0.48 (0.12)	Air; Acetate (17mM); 22	Argon; S-free acetate (17mM); 26	[55]


a. The specific hydrogen evolution
b. See Table 1.
c. See Table 1.
d. 14-hour light and 10-hour dark. en evolution based on per gram of chlorophyll or 10^9 cells (in blanket).


X		
p	ANY	

Organism	Maximum hydrogen evolution (mmol/g dry wt /hr) ^a	Maximum hydrogen productivity (mmol/L/hr) ^b (kJ/L/hr) ^b	Gas for growth/ Carbon/ nutrient; Light intensity (w/m ²) ^c	H evolution gas; Induction time; Carbohydrate storage (g/L)	Ref
Chlamydomonas reinhardtii	(0.96) ⁸	0.13 (0.032)	Air/Acetate; 0.6	N ₂ ; ~5hr dark; Starch 0.77	[60]
Chlamydomonas MGA 161	0.1	0.2 (0.048)	95% air/ 5% CO ₂ ; 25	N ₂ ; 12 hr dark; Starch 0.22	[64]
Spirulina platensis	0.11	0.18 (0.043)	Air/ N-limited; 8	N ₂ : 12-24 hr dark; Glycogen 0.81	[66]
Gloeocapsa alpicola	1.02	1.6 (0.38)	98% air/ 2% CO ₂ / N-limited; 36	Argon; 24 hr dark Glycogen 1.4	[67]
Gloeocapsa alpicola	(~4.5)*	0.0072 (0.002)	96% air/ 4% CO ₂ / S-deprived; 5	Argon; 12 hr dark Glycogen 0.024	[58]
Synechocystis PCC6803	(~3) ^a	0.0048 (0.001)	96% Air/ 4% CO ₂ / S-deprived; 5	Argon; 12 hr dark Glycogen 0.02	[58]

	A	
Table 2. A list of the processes integrated with the production of H2 from dark MEC, microbial electrolysis cell: BEH, bio-electrolydrolysis).	fermentation (DF, dark ferment	ation; PF, photofermentation;

Contractor in the	1	first Stage	Sec	Referenc	
Substrate -	Process Type	Yield	Process Type	Yield	Referenc
Comstalks	Hydrogen (DF)	58.0 mL/g	Methane (DF)	200.9 mL/g	[93]
Rice straw	Hydrogen (DF)	20 mL/g	Methane (DF)	260 mL/g	[94]
Water hyacinth	Hydrogen (DF)	38.2 mmol Hy/L/day	Methane (DF)	29 mmol CH4/L/d	[95]
Water hyacinth	Hydrogen (DF)	51.7 mL of H2/g of TVS	Methane (DF)	43.4 mL of CH4/g of TVS	[96]
Laminaria japonica	Hydrogen (DF)	115.2 mL of H ₂ /g	Methane (DF)	329.8 mL of CHa/g	[97]
Cassava wastewater	Hydrogen (DF)	54.22 mL of Hy/g	Methane (DF)	164.87 mL of CH4/g	[98]
Microalgal biomass	Hydrogen (DF)	135 ± 3.11 mL of H2/g/VS	Methane (DF)	414 ± 2.45 mL of CH4/g/VS	[99]
Glucose	Hydrogen (DF)	1.20 mmol	Hydrogen (PF)	5.22 mmol	[100]
Cheese whey wastewater	Hydrogen (DF)	2.04 mol	Hydrogen (PF)	2.69 mol	[101]
Vegetable waste	Hydrogen (DF)	12.61 mmol H ₂ /day	Electricity (DF)	111.76 mW/m ²	[87]
Fruit juice industry wastewater	Hydrogen (DF)	1.4 mol H ₂ /mol hexose	Electricity (DF)	0.55 W/m ²	[102]
Corn stover lignocellulose	Hydrogen (DF)	1.67 mol Hy/mol glucose	Hydrogen (MEC)	1.00 L/L-d	[103]
Cellobiose	Hydrogen (DF)	1.64 mol H2/mol glucose	Hydrogen (MEC)	0.96 L/L-d	[104]
Distillery spent wash	Hydrogen (DF)	39.8 L	Bioplastic	40% dry cell weight	[105]
Food waste	Hydrogen (DF)	3.18 L	Bioplastic	36% dry cell weight	[106]
Pea shells	Hydrogen (DF)	5.2 L of H2 from 4 L	Bioplastic	1685 mg of PHB/L	[107]
Food waste	Hydrogen (DF)	69.94 mmol	Lipid	26.4% dry cell weight	[108]
Olive oil mill wastewater	Hydrogen (DF)	196.2 mL/g	Biopolymer	8.9% dry cell weight	[109]
Molasses wastewater	Hydrogen (DF)	130.57 mmol	Ethanol	379.3 mg/L	[110]
Food waste	Bioelectricity	85.2 mW/m ²	Hydrogen (DF)	0.91 L	[39]
Starch hydrolysate	Hydrogen (DF)	5.40 mmol H2/g of COD	Hydrogen (PF)	10.72 mmol Hi/g of COD	[111]
Sucrose	Hydrogen (DF)	$0.98 \pm 0.32 \text{ mol } H_3/\text{mol}$	Hydrogen (PF)	$4.48 \pm 0.23 \text{ mol } H_3/mol$	[112]
Glucose xylose (9:1); Microalgae biomass	Hydrogen (DF)	250 mL/L/h; 2.78 mol H ₂ /mol	Mixotropic microalgae cultivation	205 mL/L/h; 1.12 g of biomass/g of COD	[113]

X

				Å			X
ethane production and pretreatmen Feedstock	AD Process	t for microalga	_	Pretreatment	Methane	Improvement	Ref.
Pilayella, Ectocarpus, traces Enteromarpha	Continuous	-	35	Hydrothermal depolymerization+enzymatic hydrolysis	0.054 dm ³ /g substrate	+64% biogas	[114
Chlorella vulgaris	Batch	Sewage	35	Ultrasonic	N.A.	+90% biogas	[115
Scenedesmus	Batch	-	35	Ultrasonic	153.5 mL g -1 COD	+100%	[116
	Batch	-	35	Thermal at 80 °C	128.7 mL g-1 COD	+60%	111
Scenedesmus	Batch		38	High pressure thermal hydrolysis + lipid extraction	380 mL g ⁻¹ VS	+110%	jn:
	Batch	-	38	High pressure thermal hydrolysis	320 mLg ⁻¹ VS	+81%	1118
	Batch	-	38	Lipid extraction	240 mLg ⁻¹ VS	+33%	111
Vannochloropis salina	Batch	-	38	Thermal	549 mL g ⁻¹ VS	+58%	111
	Batch	-	38	Microwave	487 mL g ⁻¹ VS	+40%	111
	Batch	-	38	French press	460 mLg-1 VS	+ 33%	in
	Batch	-	38	Frozen	233 mLg ⁻¹ VS	-33%	in
	Batch	-	38	Ultrasonic	247 mL g ⁻¹ VS	- 29%	111
hlamydomonas, Scenedesmus, Nannocloropsis	Batch	-	35	Thermal	398 mLg ⁻¹ VS	+46%	[97
				Ultrasound	310 mL g ⁻¹ VS	+14%	[97
				Biological	100000000000000000000000000000000000000	Negligible	197
Acutodesmus obliquus, Oocystis sp., Phormidium and Nitzschia sp.	Batch	-	35	Thermal	307 mLg ⁻¹ VS	+55%	[97
				Ultrasound	223 mLg ⁻¹ VS	+13%	[97
				Biological	N.A.	Negligible	[97
Microspora	Batch	-	35	Thermal 110 °C	413 mL g-1 VS	+62%	[97
				Ultrasound	314 mL g-1 VS	+24%	[97
				Biological	NA	Negligible	[97
Scenedesmus	Batch	-	35	Thermal 90 °C	170 mL g-1COD	+124%	[12
Rhizoclonium	Batch	-	53	Blending + Enzymatic	145 mL CH4 g-1 TS	+20%	12
Chlamydomonas reinhardtii	Batch	-	38	Drying	N.A.	-20%	[10
Chlorella Kessleri	Batch	-	38	Drying	NA	-23%	[10]

Feedstock	AD Process	Co-digestion	T (°C)	Pretreatment	Methane	Improvement
Saccharina latissima	Batch	-	37	Steam explosion at 130 °C, 10 min	268 mLg ⁻¹ VS	+ 20%
Laminaria digitata + L. hyperborea + L. Saccharina	Batch	-	50	Beating	425 mLg ⁻¹ TS	+53%
Ulva lactuca	Batch	-	55	Unwashed, macerated	271 mL g ⁻¹ VS	+ 56%
	Batch	-	55	Washed, macerated	200 mL g ⁻¹ VS	+17%
	Batch	-	55	Washed, 130 °C/20 min	187 mLg-1 VS	+7%
	Batch	-	55	Washed, 110 °C/20 min	157 mL g ⁻¹ VS	- 10%
	Batch	-	37	Unwashed, roughly chopped	162 mLg-1 VS	- 7%
	Batch	-	55	Dried, ground	176 mLg ⁻¹ VS	+13
Gracilaria vermiculophylla	Batch	-	53	Washed, Macerated	147 mL g ⁻¹ VS	+11%
Ulva lactuca	Batch		53	Washed, Macerated	255 mLg ⁻¹ VS	+68%
Chaetomorpha linum	Batch	-	53	Washed, Macerated	195 mLg-1 VS	+17%
Saccharina latissima	Batch	-	53	Washed, Macerated	333 mL g ⁻¹ VS	- 2%
Ulva lactuca	Lab-scale CSTR	Cattle manure	53	Dried, ground	15-16 ml g feed-1	N.A.
Ulva sp.	Batch	Sewage sludge	35	Washed	126 mL g -1 VS	0%
	Batch	Sewage sludge	35	Ground	126 mL g ⁻¹ VS	0%
	Batch	Sewage sludge	35	Washed, ground	180 mLg-1 VS	+30%
Ulva sp.	Batch		35	Unwashed	110 mL g ⁻¹ VS	N.A.
	Batch	-	35	Washed	94 mL g-1 VS	- 14%
	Batch	-	35	Dried	145 mLg ⁻¹ VS	+ 32%
	Batch	-	35	Dried, ground	177 mL g ⁻¹ VS	+60%
	CSTR	Bovine manure	35	Ground	203 mLg ⁻¹ VS	N.A.
Palmaria palmata	Batch	Sludge	35	NaOH, thermal pretreatment at 20 °C/ 30 min	365 mLg ⁻¹ VS	+195

Current approaches in biofuels production

- Single gene targeted approaches
 - Insertion of specific enzyme
 - Engineering of RUBISCO and/or PS II
 - Enzyme engineering
- Systemic approaches, metabolic engineering
 - Multiple insertions/deletions
 - Novel metabolic pathways
 - Tampering the central carbon metabolism

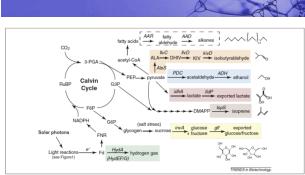
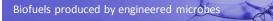


Figure 2. Golomatic opersentation of exploreer blockmonial pathwap in opnotocranic. Core methodium of photosymhetia processes is aboun 1 hol possibilitation. Banco possibili attaliar for exploration of availance compounds discussed in this inview an informatic interpret and availance analyzing specific rescalar indicated in talks. Abbreviations: PFAD, sphosphoophoremite. AND, adderbyde deschorkers. ANA schola dehydrogenase II: ANZ scendostatism phymaes. DNN: 2,301/briedov-sinovatenter (FE). Instructes Profile phymaes. PMC, adderbyde Profilesce (FD), sphosphoophorymete. AND, adderbyde metalesce (FD), guinese februskies: (FDC, private deschorkses: FDC, privat

• Single gene targeted approaches

E. coli	Proteus sp. lipase	Vegetable oils, methanol	78-100%	Gao et al. (2009)
E. coli	S. marcescens lipase	Waste grease, methanol	97%	Li et al. (2012)
E. coli	T. lanuginosus lipase, C. antarctica lipase B	Waste grease, methanol	87-95%	Yan et al. (2012b)
S. cerevisiae	R. oryzae lipase	Soybean oil, methanol	71%	Matsumoto et al. (2001)
P. pastoris	T. lanuginosus lipase	Waste cooking oil, methanol	82%	Yan et al. (2014b)
A. oryzae	F. heterosporum lipase	Rapeseed oil, ethanol	94%	Howard et al. (2010)
A. oryzae	F. heterosporum lipase, A. oryzae lipase (mdlB)	Soybean oil, methanol	98%	Adachi et al. (2011)
A. oryzae	A. oryzae lipase (mdlB)	Olein, methanol	90%	Hama et al. (2009)
A. oryzae	G. thermocatenulatus lipase	Palm oil, methanol	90%	Adachi et al. (2013a)
A. oryzae	C. antarctica lipase B	Plant oil hydrolysates, methanol	90%	Adachi et al. (2013b)
n vitro route (extracell	ular lipase)			
P. pastoris	R. oryzae lipase	Soybean oil, methanol	95%	Li et al. (2011)
P. pastoris	R. miehei lipase, P. cyclopium lipase	Soybean oil, methanol	95%	Guan et al. (2010)
P. pastoris	T. lanuginosus lipase	Waste cooking oil, methanol	87%	Yan et al. (2014a)
n vitro route (surface)	displayed lipase)			
S. cerevisiae	R. oryzae lipase	Sovbean oil, methanol	78.3%	Matsumoto et al. (2002
P. pastoris	R. miehei lipase	Soybean oil, methanol	83.14%	Huang et al. (2012)
P. pastoris	R. miehei lipase, C. antarctica lipase B	Soybean oil, methanol	90%	Jin et al. (2013)
P. pastoris	T. lanuginosus lipase, C. antarctica lipase B	Soybean oil, methanol	95.4%	Yan et al. (2012c)
E. coli	S. haemolyticus lipase	Olive oil, methanol	89.4%	Kim et al. (2013)



Systemic approaches, metabolic engineering

In vivo route				
E. coli	Overexpression of Pdc, Adh, accBACD, tesA', WS/ DGAT, fadD; knockout of fadE	Modified LB medium	922 mg/L	Duan et al. (2011)
E. coli	Overexpression of Pdc, Adh, accBACD, tesA ⁷ , WS/DGAT, fadD; knockout of fadE	Minimum medium, glycerol	813 mg/L	Yang et al. (2013)
E. coli	Overexpression of Pdc, Adh, TES, ACL, WS/DGAT, xylanases (xyn10B and xsa); knockout of fadE	Glucose, xylose, hemicellulose	3.5-674 mg/L	Steen et al. (2010)
E. coli	Overexpression of Pdc, Adh, TES, ACL, WS/DGAT, xylamases and cellulase (gly43F and xyn10B, cel3A and cel); knockout of fadE	Ionic liquid- pretreated switchgrass, xylan/ cellobiose, glucose	71-405 mg/L	Bokinsky et al. (2011)
E. coli	Overexpression of FAT, FAMT, MAT	M9 minimal medium, glucose	$1.87-22\mu M$	Nawabi et al. (2011)
S. cerevisiae	Acc, WS	SD medium, glucose	8.19 mg/L	Shi et al. (2012)
S. cerevisiae	Disruption of DGA1, LRO1, ARE1, ARE2 and POX1; overexpression of WS	Glucose, YNB	17.2 mg/L.	Valle-Rodríguez et al. (2014)

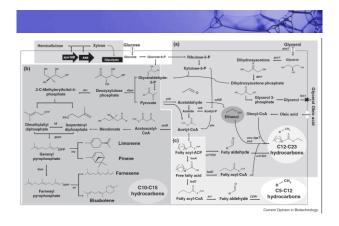
Current approaches in biofuels production

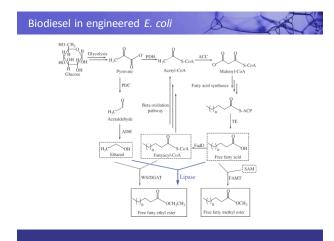
- Designing photosynthetic microorganisms for production of photobiological solar fuels
- Microbial fuel cells (electrobiofuels)
- Technical cultures of engineered (and natural) strains of microorganisms
- Systems metabolic engineering of bacteria and yeast, creation of cell factories for high-value desired chemicals

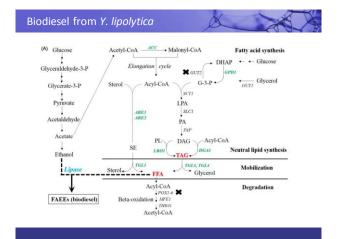
- Lipids and fatty acids
- Fatty alcohols
- Ethanol, isopropanol QН
- ÷ Butanol, methylbutanol `CH₃ H₃C H₃C′

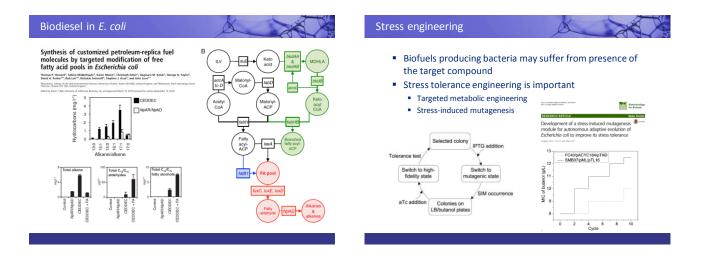
ĊH₃

ĊНз


H₃Ć


H₃C


CH₃


`ОН

- ÷ Hexanol, octanol
- Alkanes, alkenes
- Isoprenoids
 - ĊНз

⁶ National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, ⁹ Department of Chemical and Biomolecular Disporting, Ohio University, Athens, Ohio 45701, USA Received 5 December 2006; received in revised ferm 10 May 2007 Available anime 23 May 2007

Read pages 465-470

