
7. Molecular Biotechnology in Industry

Outline

- Enzymes and applications
- Definition of white biotechnology
- ☐ Sustainable development
- Enzyme sources
- Industrial production of proteins
- Enzyme and cells immobilization
- Examples of biocatalytic applications

Enzymes

- natural catalysts (biocatalyst)
- catalyze chemical reactions in living systems

- oxidoreductases oxidation/reduction
- transferases transfer of functional groups
- hydrolases hydrolytic cleavage
- Iyases cleavage of C-C, C-N and C-O bonds
- isomerases racemization, epimerization
- ligases formation of C-C, C-Nand C-O bonds

Enzyme applications

restrictases DNA ligases polymerases

phosphatases peroxidases

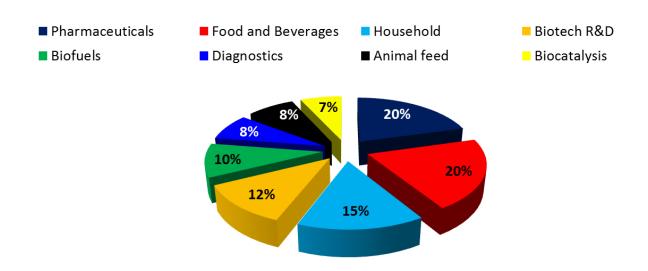
amylases proteases cellulases phytases lipases

lipases nitrilases peptidases amidases aldolases

asparaginase DNase urokinases proteases

cellulases ligninase lipases

amylase cellulases catalase



dehalogenases choline esterase peroxidases

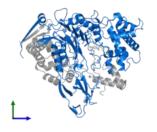
White (industrial) biotechnology

- biotechnology incorporated into production processes and products that involve chemical reactions - biocatalysis
- □ sustainable and environmentally-friendly industry
- provide energy efficiency, increased productivity and better safety
- uses **enzymes** and **micro-organisms** to make products and services in a wide range of industrial sectors

Sustainable solutions

- ☐ innovative and competitive products and processes meeting criteria of sustainability
- □ transfer of biological solutions to modern technologies create the future in balance between economy, cleaner environment and better lives
- "... development that meets the **needs of the present**without compromising the ability of **future** generations
 to meet their own needs" (WCED, 1987)

Example of sustainable technology


Chemical process (-40°C)

penicillin G

1000 t	penicillin G
160 t	ammonia
300 t	dimethylchlorosilane
800 t	<i>N,N</i> -dimethylaniline
600 t	phosphopentachloride
4,200 m ³	dichloromethane
4,200 m ³	<i>n</i> -butanol

Biocatalysis (+30°C)

1000 t	penicillin G
45 t	ammonia
10,000 m ³	water
1 t	ENZYME
	(1 \$/kg 6-APA)

Enzyme-based technologies

ADVANTAGES

- high catalytic efficiency
- broad substrate specifity
- high selectivity
- compatibility of each other
- reusability
- sustainability
 - produced from biomass
 - non-toxic and biodegradable
 - operate at mild conditions
 - less byproducts and wastes

LIMITATIONS

- cofactor requirement
- prone to inhibitions
- highest activity in water
- less stable
- ☐ low selectivity
- expensive

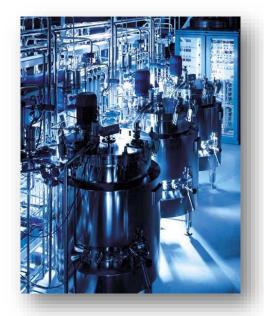
Enzyme sources

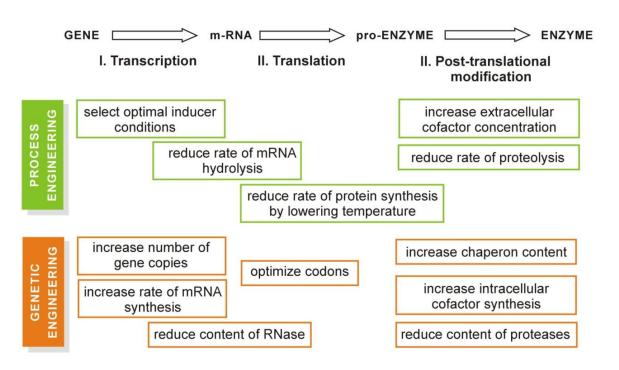
- animal and plant tissues
 - thousands years old developed empirically
 - pancreas (treatment of hides), calf stomach (cheese-making)
 - papaya, pineapple (meat tenderization)
 - content up to 1% enzyme of tissue weight
 - less competitive compared to fermentation of microorganism
 - risk of contamination with prions and viruses harmful to humans

Source	Enzyme	Application
Animal tissues		
Bovine and porcine pancreas	proteases (e.g., trypsine, chymotrypsine), amylases, lipases	digestive enzymes, anti-inflammatory agents, health food additives
Porcine stomach	pepsine	body fortifying agents
Liver and muscle	aldolases	fructose digestion
Porcine kidney	D-aminoacid oxidase	
Plant tissues		
Pineapple stem	bromelain (mixture of proteases)	anti-inflammatory agents, meat tenderizer
Papaya latex	papain (protease)	anti-inflammatory agents
Aspegillus	proteases, lipases, amylases, cellulases	natural food supplements, digestive enzymes

Enzyme sources

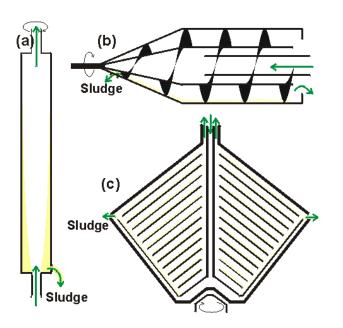
- wild-type microorganisms
 - enzymes from microorganisms long been safely used in food industry
 - food processing regulations strict for non-recombinant enzymes
 - microorganisms used for screening for "new" catalytic enzymes
 - screen for enzymes active at desired process conditions (e.g., pH, temperature)
- □ recombinant microorganisms
 - most technical enzymes produced using recombinant technology
 - when yield in wild type organism is low or desired enzyme is not in class I organism
 - bacteria, fungi and yeasts
 (e.g., E.coli, Bacillus, Aspergillus, Saccharomyces)

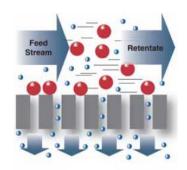




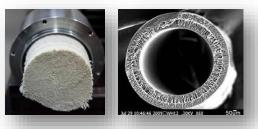
Industrial production of proteins

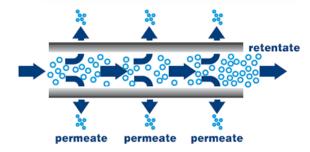
fermentation

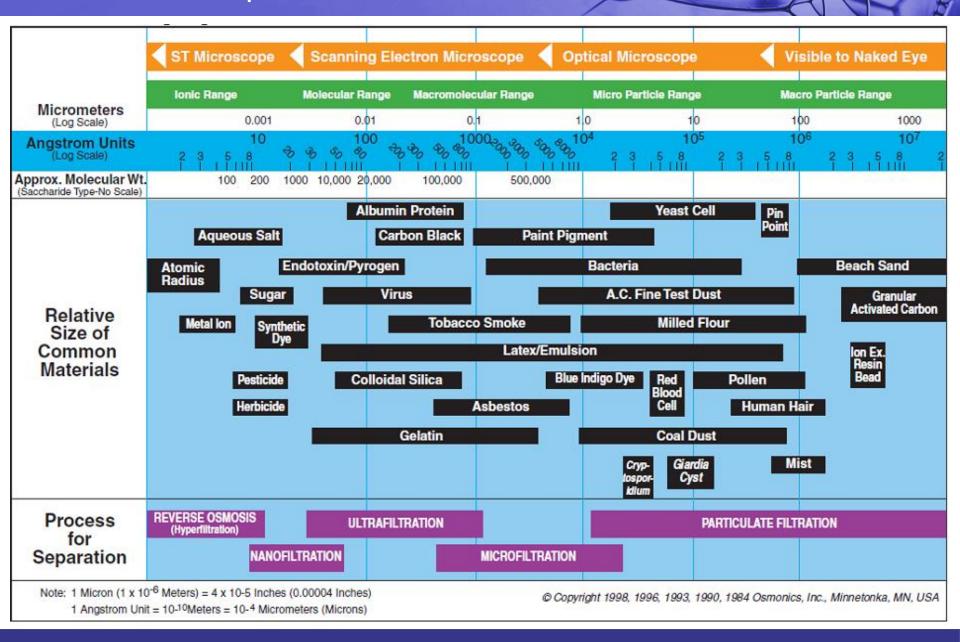

- non-recombinant and recombinant organisms
- steady and safe (class I or GRAS) organisms
- up-scale and optimization
- high cell density fermentation (50 g cell dry weight per liter)
- upper limit of protein concentration (10 g.L⁻¹; 40% of total cell protein)

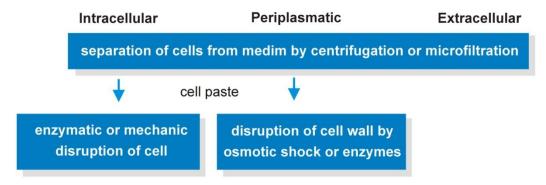


- separation and homogenization
 - dependent on application and required purity
 - technical enzymes low to moderate purity
 - proteins for therapy and diagnostics high purity

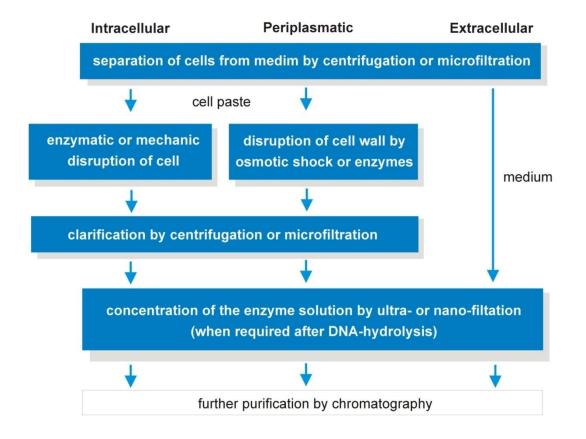

Intracellular Periplasmatic Extracellular separation of cells from medim by centrifugation or microfiltration







- separation and homogenization
 - dependent on application and required purity
 - technical enzymes low to moderate purity
 - proteins for therapy and diagnostics high purity


MECHANICAL

- · ultrasonic disruption cell lysis with high frequency sound
- homogenizers high pressure (1500 bar) and expansion
- freeze fracturing water crystals as abrasive
- ball mills and blenders

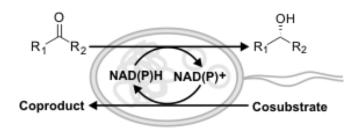
NON-MECHANICAL

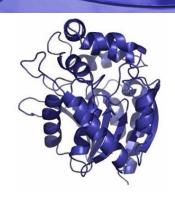
- osmotic shock (e.g., high sucrose medium)
- chemical permeabilization (e.g., solvents, surfactants, antibiotics)
- enzymatic permeabilization (e.g., glycanases, proteases, mannase)

- separation and homogenization
 - dependent on application and required purity
 - technical enzymes low to moderate purity
 - proteins for therapy and diagnostics high purity

- enzyme purification
 - impurities (e.g., proteins, DNA and others)
 - further purification when safety (e.g., recombinant DNA, viruses)
 or function reasons (impurities disturbing catalytic function)
 - basic knowledge of protein properties necessary
 - o molecular weight (MW)
 - isoelectric point (pl)
 - o cofactors
 - o pH range
 - temperature stability
 - methods of protein purification
 - precipitation and differential solubilization (e.g., ammonium sulfate, pH, solvents)
 - membrane filtration
 - chromatographic methods
 (e.g., size exclusion, ion exchange, hydrophobic, metal affinity, biospecific)
 - more steps -> higher purity (each step loss >10% of enzyme)

Whole cell vs. isolated enzyme

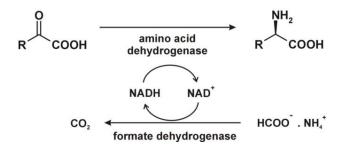



advantages

- allow more enzymes
- cofactor regeneration
- cheap

disadvantages

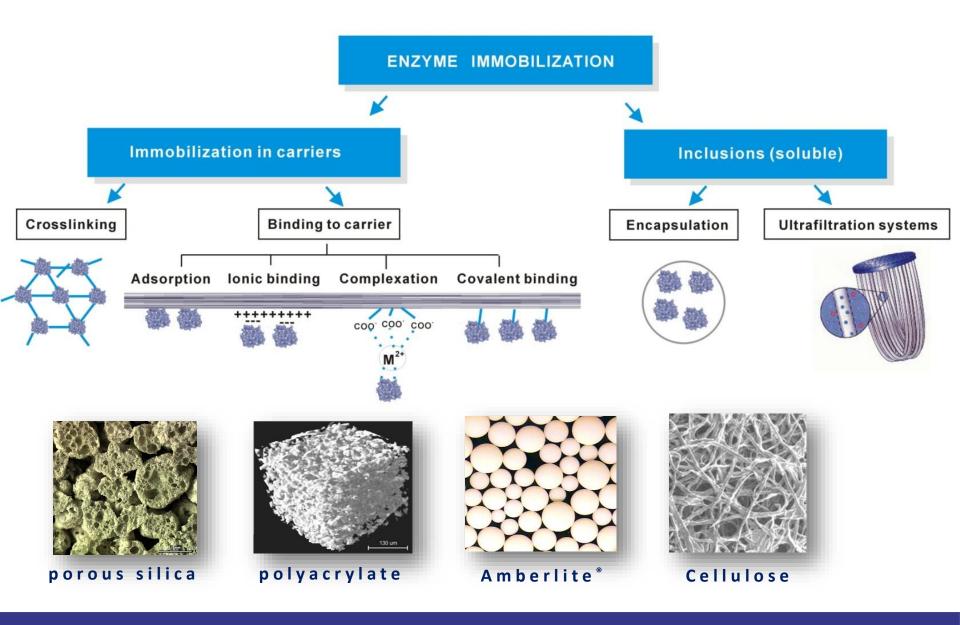
- side-reactions
- low tolerance to solvents
- low productivity

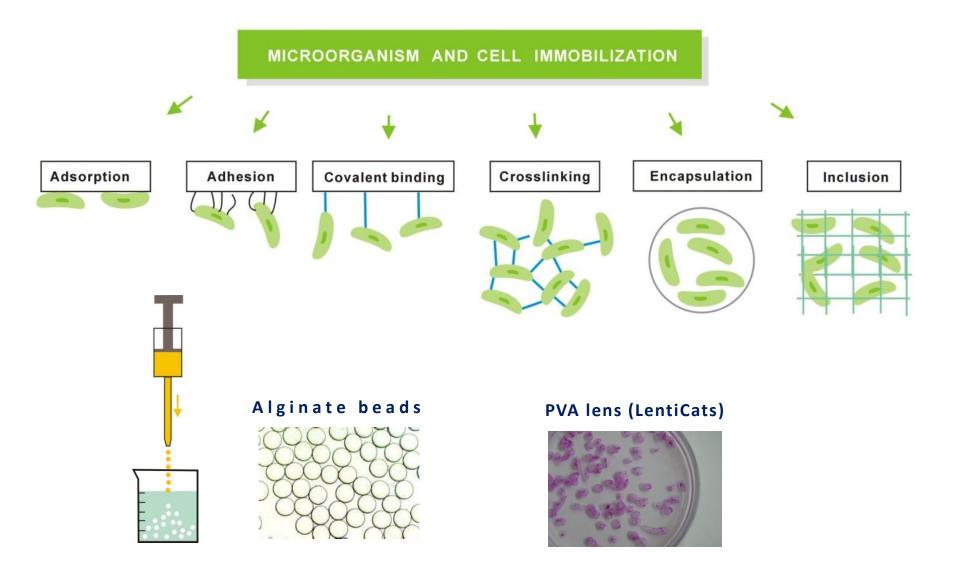


advantages

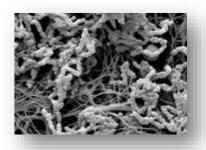
- smaller reactors
- less side reactions
- higher productivity

disadvantages


- more expensive
- addition of cofactors
- less stable outside cell

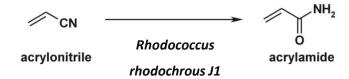

Immobilisation methods

- biocatalysts (enzyme or cell) limited in moving due to chemical or physical treatment
- benefits
 - stabilization by immobilization
 - easy separation of product
 - repeated use of biocatalyst
 - continuous bioprocessing
- limitations
 - expenses of carriers and immobilization
 - activity loss during immobilization
 - changes in properties of biocatalyst
 - mass transfer limitations


Immobilisation of enzyme

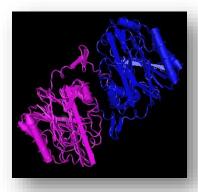
Immobilisation of cell

Examples of whole cell biocatalysis


 synthesis of agrochemical intermediates by microbial hydroxylation of heteroatomics (Lonza)

 mandelic acid - urinary antiseptic, skin care cosmetics (du Pont, Nitto Chemicals, etc.)

 large-scale production of commodity chemical - acrylamide (Mitsubishi, Nitto Chemicals)


Examples of enzyme biocatalysis

 large scale production of Aspartame, low-calorie sweetener (DSM, NutraSweet)

synthesis of high fructose syrup from corn starch
 (10 million tons per year)

synthesis of **atorvastatin**, **Lipitor**®, intermediate (Pfizer - sales since 1996 exceed US\$ 150 billion)

Reading

- Enzymes at work (Novozymes, Denmark)
 - 1. Why use enzymes for industrial processes?
 - 2. The nature of enzymes
 - 3. Industrial enzyme production

