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Abstract: Captive breeding of animals is widely used to manage endangered species, frequently with the
ambition of future reintroduction into the wild. Because this conservation measure is very expensive, we need
to optimize decisions, such as when to capture wild animals or release captive-bred individuals into the wild. It
is unlikely that one particular strategy will always work best; instead, we expect the best decision to depend on
the number of individuals in the wild and in captivity. We constructed a first-order Markov-chain population
model for two populations, one captive and one wild, and we used stochastic dynamic programming to identify
optimal state-dependent strategies. The model recommends unique sequences of optimal management actions
over several years. A robust rule of thumb for species that can increase faster in captivity than in the wild is to
capture the entire wild population whenever the wild population is below a threshold size of 20 females. This
rule applies even if the wild population is growing and under a broad range of different parameter values. Once
a captive population is established, it should be maintained as a safety net and animals should be released
only if the captive population is close to its carrying capacity. We illustrate the utility of this model by applying
it to the Arabian oryx (Oryx leucoryx). The threshold for capturing the entire Arabian oryx population in the
wild is 36 females, and captive-bred individuals should not be released before the captive facilities are at least
85% full.
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Combinación de Poblaciones Silvestres y Cautivas para Maximizar la Persistencia de Especies: Estrategias de Translo-
cación Óptima

Resumen: La reproducción de animales en cautiverio es utilizada ampliamente para manejar especies
en peligro, frecuentemente con la ambición de reintroducirlos al medio natural. Debido a que esta medida
de conservación es muy costosa necesitamos optimizar decisiones, tales como cuando capturar animales
silvestres o liberar individuos criados en cautiverio. Es poco probable que una estrategia particular siempre
funcione mejor; más bien, esperamos que la mejor decisión dependa del número de individuos silvestres y en
cautiverio. Construimos un modelo poblacional de cadena de Markov de primer orden para dos poblaciones,
una en cautiverio y otra silvestre, y usamos programación dinámica estocástica para identificar estrategias
estado-dependientes óptimas. El modelo recomienda secuencias únicas de acciones de manejo óptimo durante
varios años. Una regla básica robusta para especies que pueden incrementar más rápidamente en cautiverio
que en su medio natural es la captura de toda la población silvestre, cuando ésta se encuentre debajo del
umbral de 20 hembras. Esta regla aplica aun si la población silvestre está creciendo y bajo una amplia gama
de valores de diferentes parámetros. Una vez que se establece una población en cautiverio, debe ser mantenida
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como una red de seguridad y los animales deben ser liberados solo si la población en cautiverio se aproxima
a su capacidad de carga. Ilustramos la utilidad de este modelo aplicándolo al Oryx leucoryx. El umbral para
la captura de toda la población silvestre de oryx es 36 hembras, y los individuos criados en cautiverio no
deberán ser liberados antes de que las instalaciones de cautiverio estén llenas por lo menos al 85%.

Palabras Clave: especies en peligro, estrategias de manejo óptimo, programación dinámica estocástica, repro-
ducción en cautiverio, translocación

Introduction

Extinction rates of populations or entire species have
reached catastrophic levels (MacPhee 1999). Conserva-
tion biologists aim to prevent species extinction in the
wild where possible, usually by removing or mitigating
probable threats such as habitat loss or fragmentation, in-
vasive species, or poaching (Vitousek et al. 1996). In cer-
tain cases, however, in situ conservation efforts may be
insufficient, and more extreme intervention is required
to enhance the probability of species persistence. As a
last resort, captive breeding may be advocated (Beck et
al. 1994; Snyder et al. 1996), though it is very expensive
(Balmford et al. 1996; Kleiman et al. 2000).

Translocation is an inherent part of any captive breed-
ing program. A translocation is the deliberate human-
mediated movement of organisms between populations.
Such translocations include movement between wild
populations, movement from wild to captive popula-
tions (capture or collection), and movement from captive
to wild populations (reintroduction or release). Captive
breeding involves translocating individuals, either to re-
move them from the threats they face in the wild, or, if
captive breeding is successful, to attempt their reintro-
duction (Ebenhard 1995).

One of the key factors determining the success of rein-
troduction programs is the number of individuals released
(Griffith et al. 1989; Veltman et al. 1996; Wolf et al. 1998).
As a consequence, the guidelines of the World Conserva-
tion Union (IUCN) for translocations in general (IUCN
1987) and for reintroductions in particular (IUCN 1998)
specifically call for the use of models “to specify the op-
timal number . . . of individuals to be released . . . to pro-
mote establishment of a viable population.”

Several surveys of success rates for reintroduction pro-
grams (largely for mammals and birds) have been carried
out (Griffith et al. 1989; Wolf et al. 1996; Wolf et al. 1998;
Fischer & Lindenmayer 2000). All indicate that success
rates are poor (<50%; Griffith et al. 1989; Beck et al. 1994)
and search for factors that correlate with (and potentially
cause) reintroduction success. These surveys suggest that
major factors influencing success include the number of
individuals released and the number of release attempts
(Griffith et al. 1989; Veltman et al. 1996; Wolf et al. 1998).

In situations where decision makers are faced with
choices under uncertainty, methods of decision analysis

can be a useful tool in evaluating different courses of ac-
tion (Raiffa 1968). Models of reintroductions and captive
breeding programs have been developed with a variety
of methods and for a variety of systems (e.g., Hearne &
Swart 1991; Akcakaya et al. 1995; Southgate & Possing-
ham 1995; Sarrazin & Legendre 2000), but few use de-
cision theory or can lay claim to being true optimization
models (Lubow 1996). Exceptions include Lubow (1996),
who examined translocations between two wild popu-
lations with similar demography; Haight et al. (2000),
who focused on translocation strategies for scenarios
when there are uncertainties in future biological and eco-
nomic parameters; Maguire (1986), who used a decision
tree to determine whether proponents and opponents of
captive breeding recommended management consistent
with their beliefs about the status of the population; and
Kostreva et al. (1999), who developed one-period plan-
ning models for optimization of genetic variation (based
on founder contributions) of relocated animals.

Here we used an optimization algorithm, stochastic dy-
namic programing (SDP), to identify translocation strate-
gies between wild and captive populations (e.g., in zoos,
captive breeding programs, protected areas) that maxi-
mize overall species persistence. We were particularly in-
terested in generating broadly applicable rules of thumb
to guide conservation biologists in minimizing the prob-
ability of extinction of an endangered species. We first
developed a stochastic population dynamic model for
translocations between wild and captive populations that
relies on demographic parameters and predicts the num-
bers of individuals in both populations. We then applied
the model and algorithm to a case study of the Arabian
oryx (Oryx leucoryx).

Models

Stochastic Population Model

In our model we considered a captive population, Z, and a
wild population, W. Each population was limited to a max-
imum size Kz or Kw. These limits were required for the
numerical solution of the problem (see below). The Kz

had a natural interpretation as a consequence of space re-
strictions in the captive facilities. It was tempting to asso-
ciate Kw with “carrying capacity” of the wild population
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arising from limited resources or habitat through ceiling-
type density dependence. A better interpretation, how-
ever, was that Kw − 1 is the largest population size explic-
itly considered. All larger population sizes were lumped
into a single state, Kw. We discuss the accuracy of this
approximation below.

We assumed that females always have the opportunity
to mate regardless of male abundance, so we only tracked
the number of females. We also ignored age structure, so
the dynamics of the populations can be modeled as a
first-order Markov chain. Let the number of females in a
population at any given time be the state of the popula-
tion; the transition matrix describes the probability that
the population moves from one state to another in a single
year.

The Markov-chain transition matrix describing the tran-
sition rates from population density time (t) from t to
t + 1 was A = LS, which is the matrix product of the re-
cruitment matrix L and the survival matrix S. This means
that only surviving individuals have the opportunity to
reproduce.

Each element of S, si , j, is the probability of having i
surviving individuals at t + 1, given j individuals at time t,
with 0 ≤ i ≤ K and 0 ≤ j ≤ K. This is given by the binomial
probability

si, j =
{ (

j
i

)
µ j−i(1 − µ)i if 0 ≤ i ≤ j ;

otherwise, si, j = 0, (1)

where µ is the annual death probability.
To construct the recruitment matrix L, we first calcu-
lated the probability distribution of the number of female
offspring born to a given number of adult females. We
assumed that the sex ratio is constant with probability
f of giving birth to a female newborn. Females had be-
tween 0 and imax newborns of both sexes that survived
to recruitment. There is a probability distribution, li, that
a female has i surviving newborns (i = 0, . . . ., imax). For
the present, we assumed that imax = 1, l1 = λ, and l0 = 1
− λ. The derivation below will work with any discrete, fi-
nite distribution. Thus, the binomial probability, bi,1, that
a female has i female newborns is

bi,1 =
{

imax∑
j=i

l j

(
j
i

)
f i(1 − f ) j−i if 0 ≤ i ≤ imax;

otherwise, bi,1 = 0. (2)

The probability that j females have i newborns can be
obtained recursively as follows:

bi, j =
{

i∑
k=0

bk, j−1bi−k,1 for i ≤ j∗imax;

otherwise, bi, j = 0. (3)

At high population densities, reproduction is truncated
by K such that � ( female newborns + adult females) < K.
This is the only place where density dependence enters
the basic population model. Given bi,j, one can calculate
the elements of the recruitment matrix L, lm,n, as the
probability that the population density changes from n to
m due to reproduction as

lm,n =




bm−n,n if n ≤ m < K

1 −
K−1∑
i=n

bi−n,n if m = K

0 if m < n or m > K .

(4)

Based on the Markov-chain transition matrices, we calcu-
lated an approximation of the per capita growth rate as
the expected number of female replacements resulting
from one female:

r =
K∑

i=1

i Ai,1 ≈ E

(
nt+1

nt

)
. (5)

This expected growth rate is a good approximation for
n up to 90% of K. Above this point the actual expectation
is slightly reduced because the population cannot grow
above K.

Stochastic Dynamic Programing (SDP) Algorithm

The algorithm optimized management decisions involv-
ing captive breeding programs. We addressed the follow-
ing general questions: (1) At what population size should
a wildlife manager start breeding an endangered species
in captivity? (2) How many individuals should we take out
of the wild? (3) How many individuals should we release
into the wild?

The SDP model has three states: the number of individ-
uals in captivity (nz = 0, . . . , Kz), the number of individu-
als in the wild (nw = 0, . . . , Kw), and the time over which
the management plan will be optimized (t = 0, . . . , T ).
The change in population size over time in both pop-
ulations follows from Markov-chain population matrices
for the wild population Aw and the zoo population Az.
We assumed that the per capita growth rate of the captive
population equals or exceeds that of the wild population.

At each time step a wildlife manager can either do noth-
ing or transfer n individuals from the wild into captivity
(captures) or vice versa (releases). The maximum number
of captures or releases depends on the current population
sizes in captivity and in the wild. If we define releases as
negative captures, the SDP model evaluates the conse-
quences of all possible captures (decision variable d =
−nz, . . . , 0, . . . , nw). We set an objective function V that
gives a reward to the manager at the end of the time hori-
zon (t = T) that minimizes the probability that the wild
population is extinct ε years after the captive breeding
programs ceases:

V (T , nw, nz) = 1 − a′
0,nw

, (6)
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where a′
i,j is an element of the transition matrix Aε

w. In ma-
trix models one can project populations into the future by
raising the population matrix to the power of the number
of future time steps. The V minimizes the extinction prob-
ability ε time steps in the future, thus rewarding solutions
resulting in higher wild population sizes. We normally set
ε = 128 years. With some parameter settings, however,
the wild population is virtually guaranteed to be extinct
long before 128 years. In those cases we set ε =32. The
value of ε is a power of 2 to minimize the number of
matrix multiplications by repeatedly squaring the matrix
(AA = A2, A2A2 = A4, and so on). Equation 6 represents
one of many possible objective functions. Other possibil-
ities are minimizing the cost of translocation strategies or
simply having any number of wild individuals. Obviously,
the optimal strategy depends on the objective function
used.

Transferring individuals between captivity and the wild
imposes certain biological costs on the populations. The
SDP model considers the following costs in terms of de-
creased reproduction and increased mortality. (1) We as-
sumed that, as a result of stress and disorientation, translo-
cated individuals do not breed in the year of translocation.
It is largely unknown whether newly translocated individ-
uals may breed, so we assumed the worst-case scenario.
(2) Only a fraction of wild individuals survive the trans-
fer to captivity because individuals may die from injuries
sustained during capture or from stress during transport.
Similarly, not all individuals translocated from captivity to
the wild survive. (3) In addition, there might be a cost to
the wild population as a whole if captive breeding pro-
grams create an uncontrolled demand for live individuals
and profiteers think they can sell them to zoos (Rabi-
nowitz 1995; Struhsaker & Siex 1998). We assumed that
all aforementioned costs apply only to the first year fol-
lowing capture or release of animals. This implies that
appropriate government actions against illegal hunting
take effect within 1 year and that the genetic makeup be-
tween captive and wild animals is the same. The latter as-
sumption might be violated for some species, particularly
after long periods of captivity. Directionally selected traits
important to survival, such as foraging ability, disease re-
sistance, or predator avoidance, when released from se-
lection, can decline as much as 2% due to an increased
frequency of deleterious mutation (Shabalina et al. 1997;
Reed & Bryant 2001). Including long-term effects greatly
increases the state space, however, and the magnitude of
long-term effects is largely unknown for most species.

Mortality costs were modeled by means of the ratio
α (α = reduced survival/natural survival). The factors
ranged from 1 to 0, with lower values indicating higher
costs. So the new mortality was µnew = 1 − [(1 − µ)α].
We calculated three additional Markov-chain matrices em-
ploying Eqs. 1–4 but using higher mortality rates for cal-
culating S: Arel for released individuals, Acapt for captured

individuals, and Afixed for the noncaptured individuals of
the wild population. Stochastic dynamic programing op-
erates by back-stepping from the terminal time (at which
we receive reward V ) to the present (Bellman 1957). The
dynamic programing equation in this case was

V (t, nw, nz) = max
d




do nothing if d = 0
release if d < 0
capture if d > 0,

(7)

where d is the number of captured or translocated in-
dividuals (releases being considered negative captures),
and

do nothing =
Kz∑

i=0

Kw∑
j=0

V (t + 1, i, j)aw
j,nw

az
i,nz

,

release = φ +
Kz∑

i=0

Kw∑
j=0

0∑
k=d

V (t + 1, i, j − k)

× aw
j,nw

arel
−k,−daz

i,nz+d, and

capture = φ +
Kz∑

i=0

Kw∑
j=0

d∑
k=0

V (t + 1, i + k, j )

× aw−h
j,nw−dacap

k,d az
i,nz

.

Superscripts indicate the transition matrix (e.g., az
i,nz

is the
probability that nz females of the captive population in
year t become i females in year t + 1).

For some parameter combinations the optimization sur-
face was very flat, resulting in virtually the same survival
probabilities for a range of management strategies. If the
benefit of transferring some individuals from captivity to
the wild or vice versa is insignificant, it makes more sense
to do nothing. Therefore, we introduced a small penalty,
φ, for doing something, with φ = 10−12.

Model Scenarios

The SDP algorithm calculates the optimal decision for
each combination of wild and captive population num-
bers at each time step. For example, if we consider popu-
lation sizes of 0–50 females in the wild and 0–20 females in
captivity, the size of the decision matrix at each time step
is 1071 (decision matrix, [Kw + 1] × [Kz + 1] = 1071).
This complexity makes the interpretation of an extensive
sensitivity analysis infeasible. Instead, we ran the model
with a limited set of different parameter combinations.
We changed one or two parameters at a time for either
the wild or the captive population. The parameters of all
scenarios are listed in Tables 1 and 2.

Conservation Biology
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Figure 1. Optimal number of translocated animals as
a function of population numbers in the wild and in
captivity. The grayscale intensity is proportional to the
number of translocated animals: white = 0; dark gray
= 50. Key: C, captures; R, releases; stripes, entire wild
population should be captured (d = nw) (captive
population: λz = 1.0, µz = 0.1, rz = 1.3; wild
population: λw = 0.8, µw = 0.4; rw = 0.85).

Results

We consider a maximum of Kw = 50 females in the wild
and Kz = 20 females in captivity. The objective of the
optimization algorithm was to minimize the extinction
probability in the wild, so the entire captive population
is released at the time horizon (T = 100). Here we only
present stationary decisions, which means we stepped
backward in time until the decisions were independent
of the time remaining. This generally occurred by T = 70.
The results of the SDP algorithm are complex because
they can be different for each combination of female
numbers in the wild and in captivity. We present the en-
tire decision matrix for two scenarios. For the remaining
scenarios, we show only the boundaries between d < 0
(start releasing animals), d = 0 (doing nothing), and d > 0
(stop capturing) (boundaries between the gray and white
areas in Fig. 1). If the population was growing faster in
captivity than in the wild, the model suggested aiming
for a large captive population, even if the wild popula-
tion was growing. The particulars of the optimal strategy
differed depending on the growth rates of the populations

in the wild and in captivity. Changing the capturing mor-
tality (αcapt), fixed mortality (αfixed), or release mortality
(αrel) did not influence the optimal management strategy
significantly (results not shown).

These population boundaries are rather small, but run-
ning the model with larger values of Kw and Kz was not
feasible because the size of the population in the wild
and in captivity determined the state space, and in SDP
models the running time increases exponentially with the
state space. For example, running the model with slightly
larger maximum populations of Kw = 150 and Kz = 30
took >9 days on a 700 MHz PIII. We carried out a small
number of scenarios with larger state spaces. A larger
value of Kz shifted the entire release state space to larger
captive population sizes; the state space for capturing
remained the same. If a population is threatened with ex-
tinction, the captive facilities should be filled as quickly
as possible and maintained; thus, the larger the captive
facilities the larger the number of animals captured. In-
creasing Kw changed neither the capturing nor the release
state space. The results were independent of Kw because
the transition probabilities are independent of Kw, given
nw < Kw. However, the small value of Kw limited the
applicability of this implementation of the model to the
management of populations that had already declined to
very low levels (nw < 50) because the calculated strategy
did not cover wild populations larger than this.

Influence of the Per Capita Growth Rate in Captivity, Rz

As a baseline case, we assumed that the wild population
was decreasing annually by 15% and that the captive pop-
ulation was increasing annually by 30% (Fig. 1). In general,
the lower the population numbers in the wild and in cap-
tivity, the higher the proportion of wild animals captured.
For example, if the wild population was ≤36 females and
there was no captive population, our model suggested
transferring the entire wild population into captivity. In
some cases, the average number of captured animals ex-
ceeded the carrying capacity of the captive population.
Although this may seem counterintuitive, it is better to
guarantee filling up the captive facilities despite the high
risk of losing some animals through lack of space in the
captive facilities because the wild population is rapidly
approaching extinction. With increasing growth rate in
captivity, the region of the state space where capturing
was optimal decreased (Fig. 2). Because the captive pop-
ulation serves as a safety net, it is best to maintain a large
captive population. This is achieved more quickly with
high breeding success in captivity; so the initiation of
capturing should be delayed until lower abundances of
the captive population are reached.

The optimal release strategy was relatively indepen-
dent of population numbers in the wild. Animals were
only released if the captive population was close to its
maximum size, and only relatively small numbers were
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Figure 2. Influence of changing breeding success in
captivity on the optimal captive breeding strategies,
given that rw = 0.85. Lines indicate the boundaries
between d > 0 (capturing), d = 0 (do nothing), and
d < 0 (releasing) (boundaries between the gray and
white areas in Fig. 1). Dotted lines specify the
“capturing” state space boundary and solid lines the
“releasing” state space. Letters next to each line
indicate the value for the per capita growth rate in
captivity: a, rz = 1.3; b, rz = 1.2; c, rz = 1.1; d, rz = 1.0.
If rz = 1.0, the model suggested that animals should
never be released from captivity; consequently, there is
no d in the “releasing” state space.

released (between two and six females) (Fig. 1). With
increasing growth rate in captivity, the state space that
suggested releasing females increased (Fig. 2). If the pop-
ulation in captivity only replaced itself (rz = 1.0), no an-
imals were released. The captive population was an im-
portant safety net as long as the population growth rate
in captivity was higher than that in the wild, and only
surplus females were released into the wild. If rz = 1.0, a
surplus in captivity was unlikely. Hence, no animals were
released.

As long as the growth rate, rz, was the same, the exact
combination of the recruitment rate, λz, and the mortality
rate, µz, had little influence on the results. The relative
values of recruitment and mortality were more important
than the absolute values. The exception was in scenar-
ios with rz = 1.2, where the “capturing” state space was
larger for µz = 0.2 (i.e., shifted toward the right) com-
pared with µz = 0.04. This was because the increase in
mortality between the two scenarios needed to maintain
a growth rate of 1.2 was much larger than for any of the
other scenarios.

Figure 3. Optimal number of translocated animals as
a function of population numbers in the wild and in
captivity. The gray-scale intensity is proportional to
the number of translocated animals: white, 0; dark
gray, 50. Key: C, captures; R, releases; stripes, entire
wild population should be captured (d = nw) (captive
population: λz = 1.0, µz = 0.1, rz = 1.3; wild
population: λw = 0.8, µw = 0.2, rw = 1.1). Arrow
indicates the only combination of states where
releases take place.

Influence of the Per Capita Growth Rate in the Wild, Rw

Next we assumed that the wild population was grow-
ing annually by 10% and, as before, that the captive pop-
ulation was increasing annually by 30% (Fig. 3). If the
wild population was ≤29 females and the captive popu-
lation was rather small, our model recommended captur-
ing the entire wild population. In contrast to the scenario
with a negative growth rate in the wild (Fig. 1), the state
space where animals were captured was smaller, mainly
because the wild population was left alone if the popu-
lation exceeded 30 females. If the wild population was
rather small, the risk of extinction was significant, even
if the population was growing. Consequently, it was ad-
vantageous to maintain a viable captive population. With
decreasing growth rates in the wild, the state space that
suggested capturing ≥1 animal increased (Fig. 4). There
was a trade-off between the risk of individuals dying in
the wild and the risk of individuals dying in captivity as
a result of the limited maximum size. The worse off the
population was in the wild the more the balance shifted
in favor of the captive population, resulting in an increas-
ing “capturing” state space with decreasing per capita
growth rate in the wild.

Conservation Biology
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Figure 4. Influence of changing the per capita growth
rate of the wild population on optimal captive
breeding strategies, given rz = 1.3. Lines indicate the
boundaries between d > 0 (capturing), d = 0 (do
nothing), and d < 0 (releasing) (boundaries between
the gray and white areas in Fig. 3). Dotted lines
specify the “capturing” state space boundary and solid
lines the “releasing” state space. Letters next to each
line indicate the value for the per capita growth rate
in the wild: a, rw = 1.1; b, rw = 0.9; c, rz = 0.85; d, rw =
0.8; e, rw = 0.7. Small and capital letters indicate
different recruitment rates in the wild: A and C, λw =
0.8; b, d, and e, λw = 0.5.

The release strategy depended on whether the wild per
capita growth rate, rw, was >1 or <1. If the population
was decreasing in numbers (rw < 1), the “release” state
space decreased with decreasing wild population growth
rate, rw, until no animals were released at rw < 0.85. At
this point the mortality risk in the wild was similar to
the mortality risk of the captive population approaching
its carrying capacity, and it was better not to release in-
dividuals. If the wild population was growing (rw > 1),
animals were only released if the captive population had
reached its carrying capacity and the wild population was
extinct. Not to release excess animals from the zoo was a
bit surprising, but if the wild per capita growth rate is >1,
increasing the number of wild animals does not increase
their long-term survival probability because the popula-
tion will most likely recover from small population sizes
on its own, and if the population happens to go extinct,
the captive population provides females to recolonize the
wild population.

Case Study: Arabian Oryx

Arabian oryx populations once ranged throughout most
of the desert plains of the Arabian Peninsula but became

threatened by overhunting and poaching (Marshall &
Spalton 2000). Several captive breeding programs were
initiated with the intent of reestablishing oryx into native
habitats (Stanley Price 1989; Ostrowski et al. 1998; Spal-
ton et al. 1999). Reintroductions started in 1982, and the
wild population increased to 400 animals in 1996. Unfor-
tunately poaching began again and is threatening Arabian
oryx with extinction in the wild a second time (Spalton
et al. 1999). Oryx populations flourished so well in sanc-
tuaries that Treydte et al. (2001) developed a population
viability analysis (PVA) model to determine the optimal
number of oryx to eliminate from a sanctuary to minimize
the effect of overcrowding.

We parameterized our model with data on Arabian oryx
(Oryx leucoryx) from the literature. Here, we summa-
rize the range of vital rates published for this species. Re-
cruitment: Under optimal conditions females give birth
to a single calf each year, which has a 75% (Mace 1988)
to 92.5% (Vie 1996) chance of surviving the first year.
Therefore the annual recruitment rate, λ, is 0.75–0.925,
and the sex ratio f = 0.5 (Mace 1988; Vie 1996; Spalton
et al. 1999). Mortality: Annual mortality of adult Arabian
oryx in captivity ranges between 4% and 15% (Abu Jafar
& Hays-Shahin 1988; Mace 1988). We assumed that the
wild mortality rate increases up to 40% due to poaching
(Spalton et al. 1999). Translocation costs: The losses due
to capturing and transferring Arabian oryx into captivity
and vice versa are small, with mortality ranging between
0 and 5% (S. Ostrowski, personal communication). As far
as we know, fixed costs have not been documented for
Arabian oryx. For the sake of parsimony, we assumed that
the fixed costs are the same as the variable translocation
costs (0.05).

For the captive population, we assumed a best-case sce-
nario with a per capita growth rate of 1.3 (λz = 0.5; µz =
0.13), and for the wild population we assumed a per
capita growth rate of 0.85 (λw = 0.4; µw = 0.4). These
per capita growth rates are consistent with population
growth rates found in Arabian oryx sanctuaries (Abu Jafar
& Hays-Shahin 1988; Ostrowski et al. 1998; Spalton et al.
1999; Marshall & Spalton 2000). These parameter com-
binations are identical to the ones used to calculate the
optimal breeding strategies in our first scenario (Fig. 1).
If the population of Arabian oryx in the wild drops be-
low 36 females, the entire population should be trans-
ferred into captivity, and captive-bred individuals should
not be released unless the captive facilities are at least
85% full.

Discussion

Reintroduction programs have been proposed or carried
out for a wide taxonomic range of species. Although many
taxonomic groups are suitable for translocations, the ma-
jority have been birds and large mammals (Griffith et al.
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Table 1. Parameter combination for different scenarios in the model for translocations between wild and captive populations.∗

λz µz λw µw αcapt α fixed α rel τ η rz rw

Varying rz by keeping λz 1.0 0.13 0.8 0.4 0.05 0.05 0.05 — — 1.3∗ 0.85
constant and changing µz accordingly 1.0 0.20 0.8 0.4 0.05 0.05 0.05 — — 1.2 0.85

1.0 0.27 0.8 0.4 0.05 0.05 0.05 — — 1.1 0.85
1.0 0.33 0.8 0.4 0.05 0.05 0.05 — — 1.0 0.85
0.5 0.04 0.8 0.4 0.05 0.05 0.05 — — 1.2 0.85
0.5 0.12 0.8 0.4 0.05 0.05 0.05 — — 1.1 0.85
0.5 0.20 0.8 0.4 0.05 0.05 0.05 — — 1.0 0.85

Varying rw by keeping λw 1.0 0.13 0.5 0.25 0.05 0.05 0.05 — — 1.3 0.9
constant and changing µw accordingly 1.0 0.13 0.5 0.36 0.05 0.05 0.05 — — 1.3 0.8

1.0 0.13 0.5 0.44 0.05 0.05 0.05 — — 1.3 0.7
1.0 0.13 0.2 0.18 0.05 0.05 0.05 — — 1.3 0.9
1.0 0.13 0.2 0.27 0.05 0.05 0.05 — — 1.3 0.8
1.0 0.13 0.2 0.36 0.05 0.05 0.05 — — 1.3 0.7

Varying αcapt 1.0 0.13 0.8 0.4 0.0 0.05 0.05 — — 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.05 0.05 — — 1.3 0.85
1.0 0.13 0.8 0.4 0.1 0.05 0.05 — — 1.3 0.85

Varying αfixed 1.0 0.13 0.8 0.4 0.05 0.0 0.05 — — 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.05 0.05 — — 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.1 0.05 — — 1.3 0.85

Varying αrel 1.0 0.13 0.8 0.4 0.05 0.05 0.0 — — 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.05 0.05 — — 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.05 0.1 — — 1.3 0.85

DD αrel 1.0 0.13 0.8 0.4 0.05 0.05 — 0.1 0.99 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.05 — 0.3 0.99 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.05 — 1 0.99 1.3 0.85
1.0 0.13 0.8 0.4 0.05 0.05 — 2 0.99 1.3 0.85

∗Key: µz, µw, mortality rates in captivity or in the wild; λz, λw, recruitment rate in captivity or in the wild; rz, rw, per capita growth rate in
captivity or in the wild; αcapt , αfixed, αrel , mortality costs for captured individuals, for individuals remaining in the wild, and for released
individuals, respectively; τ , rate determining how quickly αrel decreases with increasing number of released animals; η, specifies αrel if only a
single animal is released. In all scenarios the carrying capacity for the wild population, Kw, is 50, and for the captive population, Kz, = 20. If λz

= 0.25, it is impossible to get a growth rate of rz = 1.3.

1989; Wolf et al. 1996; Wolf et al. 1998). However, success
has been limited (Griffith et al. 1989; Beck et al. 1994), and
we are in need of improved translocation strategies. Crit-
ical for the success of translocation programs is the size
of translocations between captivity and the wild (Grif-
fith et al. 1989; Veltman et al. 1996; Wolf et al. 1998).
It is unlikely that one particular translocation size will al-
ways work best; instead, we expect the number of animals
translocated to depend on the current number of individ-
uals in the wild (nw) and in captivity (nz). The combina-
tion of animal numbers in the wild and in captivity may
be different each year as a result of demographic change
or some management action. We developed an optimiza-
tion model that finds such state-dependent strategies and
recommends unique sequences of optimal management
actions over several years.

The maximum population sizes in the model were kept
small for practical reasons, but we believe our results
have implications for the management of populations that
could be larger (i.e., have larger “carrying capacity”) but
that for whatever reason have been reduced to small num-
bers. This is because the upper boundary for the wild pop-
ulation can be interpreted as “all population sizes equal
or larger than Kw.” This is not strictly correct because the

true transition rates out of a state Kw+ to states nw <

Kw would incorporate the fact that the population could
be far above Kw, whereas our approximation assumes
that transitions are all coming from Kw. Therefore, our
approximation was a somewhat too high of a probabil-
ity of reaching states below Kw. However, the effect of
this error is small. We compared the 128-year extinction
probability from a transition matrix with Kw = 50 with
the extinction probability from a transition matrix with
Kw = 100, both with rw ≈ 1. For nw < 40 they were in-
distinguishable to the eye, and even at nw = 49 the differ-
ence was only 0.029 (Kw = 50) versus 0.017 (Kw = 100).
The approximation was best when population growth

Table 2. Parameter combinations to generate different per capita
growth rates in the wild (rw) and in captivity (rz), given the following
recruitment rates: λz = 1.0 and λw = 0.2

Captive population Wild population

rz µz rw µw

1.0 0.334 0.7 0.363
1.1 0.2667 0.8 0.2728
1.2 0.20 0.9 0.1818
1.3 0.1333 1.0 0.0909
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was negative and got worse as the population growth
rate increased.

The key determinants of the optimal policy are the per
capita growth rates in the wild and in captivity, r, which
are determined by λ and µ. The exact combination of the
recruitment rates, λ, and the mortality rates, µ, have neg-
ligible influence on the optimal captive breeding strate-
gies. It is their relative not absolute sizes that matter. This
means that time-series analysis can be used to estimate the
r values, if such data are available, rather than estimating
µ and λ independently.

From these results, we suggest the following general
rules of thumb be used as a decision tool for designing
translocation programs without running a stochastic pro-
graming (SDP) model for every situation, assuming that
the zoo population has a better growth rate than the wild
population. (1) The frequency of (nw × nz) combinations
suggesting translocations from the wild into captivity and
the number of animals involved is higher when the cap-
tive population and/or the wild population is smaller. If
the wild population is very small (<20 females), the entire
wild population is captured, even if the wild population
is growing. (2) The frequency of (nw × nz) combinations
suggesting translocations from captivity into the wild and
the number of animals involved is practically independent
of the size of the wild population but increases with an
increasing captive population.

These rules emphasize that a captive population is criti-
cal for the persistence of small populations, assuming that
the per capita growth rate in captivity exceeds that in the
wild. In fact, if the wild population is small, our model
suggests transferring every single wild animal into cap-
tivity. Somewhat surprisingly, this holds true even if the
per capita growth rate of the wild population is positive.
Small populations are inherently in danger of extinction as
a result of demographic stochasticity. Thus, the best strat-
egy entails building up population numbers as quickly
as possible, which is by propagation in captivity. Once
a captive population is established, it is best to maintain
it as a safety net and only release animals if the captive
population is close to its carrying capacity.

The model does not presently incorporate environmen-
tal stochasticity, which would result in fluctuations of vital
rates, and consequently growth rates, through time. We
also did not incorporate catastrophes, either in the wild
or in captivity. This is not to suggest that these processes
do not occur or are not important, and they could be
included in future versions of the model. However, we
would expect that including environmental stochasticity
and/or catastrophes in the wild would result in strate-
gies where capturing the entire wild population is recom-
mended for even larger wild population sizes. Including
catastrophic mortality in the captive population delays
capturing the entire wild population to a time when pop-
ulation sizes are smaller.

Even though the emphasis on a captive population
makes intuitive sense, maintaining a captive population
as a safety net over many years might not always be prac-
tical because of budget constraints. Our model does not
include the economic costs of creating and maintaining
a captive facility. The costs of captive breeding facilities
vary greatly depending on design and species require-
ments. In some cases, captive facilities consist of only a
protective fence against predators, and the animal may
pay for itself from visitor revenue. In this case, the main-
tenance costs could be negligible.

Our model also provides guidance for designing a re-
lease program. The key feature of the optimal release
scheme is to release small groups of animals over sev-
eral years. The exact group size varies depending on the
abundance of animals in the wild and in captivity. This
scheme has three advantages. First, the success of each
single release endeavor is of less importance. Sometimes
the establishment of released animals is affected by ad-
verse weather conditions, such as droughts. Thus, releas-
ing animals over several years reduces the effect of envi-
ronmental stochasticity on the success of reintroduction
or relocation programs. Second, captive animals multiply
at a relatively high rate, supplying the reintroduction pro-
gram over time with a large number of animals. Third,
the state dependency of the optimal management pro-
gram allows regular adjustment of management actions
in response to changes in the population numbers in the
wild and in captivity. This way, management actions can
be adjusted to improvements in estimates of vital popula-
tion parameters or the occurrence of catastrophes (e.g.,
high mortality in a drought year).

Obviously there are different factors that affect the out-
come of captive breeding and translocation programs, in-
cluding choosing release sites within the former historical
range of the species (Griffith et al. 1989; Wolf et al. 1998)
and with high habitat quality (e.g., Wolf et al. 1998); using
a soft release design (e.g., Letty et al. 2000); controlling
predators at the release site (Sinclair et al. 1998); training
released animals to avoid predators (Griffin et al. 2000);
minimizing the risk of transmitting diseases between cap-
tive and wild populations (e.g., Griffith et al. 1993; Snyder
et al. 1996); and preventing genetic change in captivity
(e.g., Ballou 1997; Earnhardt 1999). It is often difficult
to change release conditions or foresee the performance
of released animals in the wild. Our model allows one
to examine scenarios with different growth rates of the
wild population. For example, if one expects a low per
capita growth rate of the wild population as a result of
poor habitat quality of the release site or high predation
pressure, the state space identifying optimal releases de-
creases and the state space suggesting captures increases
(see Fig. 4). Examining worst- and best-case scenarios al-
lowed us to assess how sensitive optimal release strategies
are to different environmental conditions.
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Other Modeling Approaches

The need for a theoretical framework for translocation
strategies is widely recognized (Hodder & Bullock 1997).
Issues that have been addressed theoretically include de-
termining under what circumstances soft release should
be favored over hard release; the proportion of the bud-
get that should be allocated to monitoring and the allo-
cation of funds between prerelease and release activities
(Haight et al. 2000); the age structure of founder animals
(Sarrazin & Legendre 2000); the optimal size of founder
populations and the necessary degree of predator control
(Sinclair et al. 1998); and the best distribution of animals
between patches (Lubow 1996). No model to date has
derived optimal translocation strategies by linking wild
and captive populations.

Lubow (1996) also used stochastic dynamic program-
ing (SDP) to find the optimal size and frequency of translo-
cations but only between populations in two reserves.
Thus, the parameter values in both populations are iden-
tical. He employed a discrete version of the logistic pop-
ulation growth model to describe the population dy-
namic within reserves. In contrast, we envisioned pop-
ulations threatened with extinction or reared in captiv-
ity, so the dynamics are better described with an expo-
nential growth model, such as a first-order Markov-chain
model, with ceiling density dependence. In captivity, an-
imals are kept under “optimal” conditions, which allows
animal abundance to increase exponentially. Only when
the captive facilities are full does the per capita growth
rate equal zero. This sort of ceiling model is often used in
software packages for estimating extinction probabilities
(e.g., RAMAS, Akcakaya & Ferson 1990; ALEX, Possing-
ham & Davies 1995). Despite the differences in the mod-
eling approaches, both models suggest optimal strategies
that include frequent movements of a small number of
animals between two populations.

Wolf et al. (1998) suggest using population viability
analysis (PVA) to determine the minimum viable number
of animals to be released. In principle, this population
number could also be used as an indicator to instigate
conservation measures to “save” the species, such as cap-
tive breeding. However, the performance of PVA depends
on the availability of high-quality data and the assumption
that the distribution of vital rates and population growth
rates are constant in the future (Coulson et al. 2001). The
optimal release scheme we proposed relies less on high-
quality data or accurate predictions of future population
performance. Our model is based only on a few parame-
ters, and the general predictions are relatively robust to
changes in parameter values.
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