J. theor. Biol. (2000) 202, 25-32
Article No. jtbi.1999.1030, available online at http://www.idealibrary.com on IIIE§|.®

Model Assessments of the Optimal Design of Nature Reserves
for Maximizing Species Longevity
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Using a computational model for the population growth and dispersal of a model species in
a fluctuating environment, we test three nature reserve geometries (one large, many small, and
a self-similar distribution of reserve sizes) to determine which geometry maximizes species
longevity. The self-similar distribution is a close approximation to the distribution of managed
areas in the conterminous United States. We consider models with and without migration
from or between reserve fragments and both short- and long-range dispersal mechanisms. The
optimal geometry depends on the type of dispersal and on the relative probability of survival in
protected and non-protected areas. When no migration is allowed from or between reserve
fragments of the three geometries, many small equally sized reserves are the optimal geometry.
When migration is allowed, the optimal geometry is a single large reserve when the survivabil-
ity in non-protected areas is low and a self-similar distribution when the survivability is high.
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1. Introduction

Ecologists, biogeographers and conservationists
have long debated about the optimal design of
nature reserves with respect to species longevity.
The principle questions are “How big? How
many? How arranged?” (Soule & Simberloff,
1986). Although there is no single answer to these
questions since the optimal geometry of a nature
reserve always depends on variables unique to
the set of species being protected, general pat-
terns that result from simple optimization criteria
for reserve networks of a fixed total area and
uniform habitat may provide useful guidelines in
many cases.

The debate on the optimal design of nature
reserves was begun by Wilson & Willis (1975)
and Diamond & May (1976) who argued that the
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equilibrium theory of biogeography implied that
a single compact reserve was optimal. More re-
cently, it has been recognized (Abele & Connor,
1979; Gilpin & Diamond, 1980) that the equilib-
rium theory is neutral on the questions of how
big?, how many? and how arranged? and the
argument has shifted to determining minimum
viable population sizes within nature reserves
(Soule & Simberloff, 1986). Archipelagos have, in
most cases, a greater number of species than
a single island of the same total area (Soule
& Simberloff, 1986; Simberloff & Abele, 1982).
This does not necessarily suggest, however, that
archipelagos of nature reserves are an optimal
design since the total number of species may be
an inadequate optimality criterion and because
we must consider the dynamic evolution of spe-
cies abundances in reserves to determine the like-
lihood of survival (Soule & Simberloff, 1986).
There is also no simple answer to the question of
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which geometry maximizes the longevity of a spe-
cies or a group of species. Widespread species in
large reserves are likely to enjoy a smaller prob-
ability of extinction (McKinney, 1997) and lower
abundance volatility (Boulinier et al., 1998; Glaz-
ier, 1986). However, there are potentially overrid-
ing advantages to having several small reserves
instead. Although the probability of local extinc-
tion will be higher for species in small reserves
compared to large ones, it is necessary for the
species to become locally extinct in each and
every small reserve rather than only the one large
reserve for total extinction to occur in the case of
many small reserve fragments. In addition, if mi-
gration is allowed between reserve fragments, the
“rescue effect” may significantly increase the per-
sistence of species (Schoener & Spiller, 1987,
Gonzalez et al., 1998; Burkey, 1989; Hastings,
1982). The efficacy of the “rescue effect” will ne-
cessarily depend on whether the dispersal is long
or short ranged and on the probability of survival
in non-protected areas if the reserve fragments
are not connected. Thus, to answer the question
of which geometry maximizes the time to extinc-
tion of a species we must simulate realistic mod-
els of the variation of species abundance in space
and time in a variety of reserve geometries. An
alternate approach to simulating realistic models
of the variation in species abundance is the devel-
opment of algorithms for optimal reserve selec-
tion and design based on theoretical models or
empirical data on survivability (Pressey et al.,
1999; Clemens et al., 1999).

2. Modeling Population Variability

Abundance variations in population dynamic
models can be driven by three types of random
processes: demographic stochasticity, environ-
mental stochasticity, and catastrophic stochastic-
ity. In the case of demographic stochasticity
alone, the probability for an individual in a spe-
cies to reproduce or die is equal for all individuals
and constant in space and time. For a very small
number of individuals demographic stochasticity
can result in large fluctuations of population den-
sity. However, the variance becomes very small
for large abundances (variance decreases as 1/N
where N is the effective population size) and
will probably be dominated by environmental

stochasticity for all but the smallest populations.
With environmental stochasticity, the net popu-
lation growth rate is a random variable in
space and time: the net population growth from
one generation to the next is a(t + 1) — a(t) =
n(x, y, t)a(t), where a(t) is the local abundance at
time ¢ and 5(x, y, t) is an uncorrelated Gaussian
noise in space and time representing many com-
plex factors of the physical and biotic environ-
ment including variations in climate, availability
of nutrients or prey, and degree of predation
by other species (Sousa, 1984). Catastrophic
stochasticity occurs when the net population
growth rate is spatially correlated over large dis-
tances. As an example, the effects of forest fires
can be modeled by wiping out all vegetation at
a random location within a random area drawn
from the probability distribution corresponding
to the frequency-size distribution of forest fires.
Wright & Hubbell (1983) considered the problem
of species persistence in a model with demog-
raphic stochasticity. They found that one large
reserve was optimal when migration out of re-
serve fragments was not allowed and that the
average species longevity of one large and two
small reserves was nearly the same when migra-
tion was allowed. Goodman (1987) argued that
environmental stochasticity was likely to be
dominant over demographic stochasticity in
most natural cases and found that the “rescue
effect” significantly increased persistence in frag-
mented reserves for a model with environmental
stochasticity. We will consider all three types of
stochasticity in our model.

3. Model Geometries

We will consider three reserve geometries rep-
resenting two extreme cases and one intermediate
case: (a)one large square (or nearly square:
15 x 14 + 6 cells), (b) many small squares of equal
size, and (c) a self-similar distribution formed by
a Sierpinski carpet (Mandelbrot, 1983) construc-
tion (Fig. 1). Figure 1(a) and (b) deviate slightly
from square geometries in order to make their
total areas equal to that of (c). Black regions
in Fig. 1 (except for the border) are protected
areas while the remaining white space of the
60 x 60 cell grid is the non-protected area. The
unprotected areas in our models have a smaller
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FI1G. 1. Geometries of the reserve networks considered:
(a) one large nearly square (15x 14 + 6 cells), (b) many
small squares of equal area, and (c) a self-similar distribution
formed by an order 3 (3% x 32 cells) Sierpinski carpet. Black
areas (except for the border) are protected areas and all
other areas are non-protected. The total protected area and
non-protected area is the same in (a), (b), and (c).

net population growth rate to model the effects of
habitat destruction in those areas.

The distribution of reserves in Fig. 1(c) may
seem contrived. However, we have chosen to

model the Sierpinski carpet because a stochastic
version of the Sierpinski carpet corresponds
closely to the distribution of managed areas in
the conterminous United States. The managed
areas principally include wildlife refuges, state
parks, national parks, and Native American re-
serves (Fig. 2). We first consider a more realistic,
stochastic version of Fig. 1(c) illustrated in Fig. 3.
In the deterministic construction of Fig. 1(c)
a square of 27 x 27 cells is divided into nine 9 x 9
squares. The central square is made a protected
area and the remaining eight squares are further
subdivided as the original 27 x 27 square was. In
the stochastic Sierpinski carpet construction of
Fig. 3, which of the nine squares at each iteration
is made into a continuous reserve area is deter-
mined by a random selection. The cumulative
frequency-size distribution of connected areas,
the number of areas greater than or equal to A4, of
the stochastic Sierpinski carpet is a power-law
function with an exponent of — 0.8 [Fig. 4(a)].
The corresponding distribution for all connec-
ted managed areas of the conterminous United
States is identical [ Fig. 4(b)]. The distribution of
managed areas was given by McGhie et al. (1996).
In the distribution of Fig. 4(b) the managed areas
that share a common border were joined to make
a single larger area. One major difference be-
tween the model geometry of Fig. 3 and the
managed areas of the conterminous United
States is that the model areas are assumed to
be fragments in a uniform habitat whereas the
United States contains many different habitats.
Nevertheless, since the distribution of managed
areas is scale-invariant, we can expect the distri-
bution of reserve fragments to be similar at small-
er spatial scales where habitats are more uniform.
As we will show, this distribution is an optimal
geometry in the case when successful migration
between reserve fragments can occur. The opti-
mality of self-similar nature reserves in this case is
consistent with the self-organization of species
occurrence in nature into a power-law frequency-
size distribution of areas (Hastings et al., 1982;
Kunin, 1998).

Cumulative frequency-size distributions of
areas with an exponent between —1 and —3
arise in a number of geographical contexts such
as the size distribution of lakes and islands
(Mandelbrot, 1983). One possible reason for the
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FIG. 2. Managed areas of the conterminous United States from the database of McGhie et al. (1996) (shaded areas). Figure

adapted from McGhie et al. (1996).

FI1G. 3. Geometry of a one realization of a stochastic
order 5 (3° x 3% cells) Sierpinski carpet.

occurrence of this distribution is that regions
enclosed within contour lines of a self-affine frac-
tal surface have a power-law distribution of sizes.
In the case of islands and lakes this surface is the
self-affine fractal topographic surface of the Earth
(Turcotte, 1997). Self-affine fractal surfaces can be
quantified with the power spectrum. The power
spectrum S(k) of the height of a self-affine fractal
surface has a power-law dependence on wave
number k with exponent — f8: S(k) oc k~#. For the
Earth’s topography ff~ 2 is observed (Sayles
& Thomas, 1978). Other ecologically relevant
variables within landscapes besides elevation
have also been modeled as self-affine fractals
(Gardner et al., 1987, Krummel et al, 1987,
Milne, 1991). Nature reserves are likely to be
chosen, in part, because within them certain en-
vironmental factors are above or below a thre-
shold value that defines a certain habitat. If so,
reserves may be analogous to islands in which
domains above a threshold elevation are islands



MODEL ASSESSMENTS OF NATURE RESERVES 29

(a)

S
~ L‘

I 8
102 b N NAyeA "

3 N
= \'Q\
10' A
\____\_\_\‘
13.:__
|U“ vl I vl I 1 ||||\\v—u|
10" 10' 10° 10’ 10"
A (Unit area)
10"
g —51‘1 (b)
mg __ \\ NGA Joed 8
3 N
=

10° 10° 10 10 10
A (ksz

FIG. 4. (a) Cumulative frequency-size distribution of
connected areas, the number of connected areas greater than
or equal to A, of the model self-similar geometry of Fig. 3.
A power-law distribution N(> A)oc A~ %8 is obtained.
(b) Cumulative frequency-size distribution of connected
managed areas of the conterminous United States (Fig. 2).
Areas which share a border are joined together to make
a single larger area for this distribution.

in an archipelago. If the spatial variability in one
or more of those environmental factors can be
modeled as a self-affine fractal, then nature re-
serves may be expected to have a power-law
distribution of sizes similar to islands. Kondev &
Henley (1995) have related the length distribution
of contour lengths of self-affine fractal surfaces to
the Hausdorff dimension H. The Hausdorff di-
mension is related to the power spectral exponent
of the fractal surface by the relation f =2H + 1
(Mandelbrot, 1983; Hastings & Sugihara, 1993).
Kondev & Henley (1995) have shown that
the size distribution of contour lengths (the

probability that a randomly chosen contour
loop has a length s) as N(s)ocs™ °, where
7 =1+ (2 — H)/D and D is the fractal dimension
of the contours. The cumulative distribution (the
number of contours with length greater than s) is
the integral of the non-cumulative distribution,
N(>s) oc s~ @ /P Gince the length of a contour
is related to the area it encloses by s oc 4P/% (by
definition), the cumulative distribution of areas
enclosed by contours is N(> A)oc A~ 2172
For a surface with =2, H =3, and we have
N(> A) oc A~3/*, nearly consistent with the size
distribution of Fig. 4(a).

4. Modeling Migration from or Between
Reserves

We will consider two types of dispersal in our
model calculations: random-walk (short-range)
dispersal and long-range dispersal. In random-
walk dispersal, each individual moves to one of
the four adjacent gridpoints with an equal prob-
ability during each time step. Random walk dis-
persal is diffusive. Random-walk movements of
individuals in a species are similar to the random
Brownian motion of molecules in a liquid that
drives diffusion in liquids. Diffusion provides
an accurate model of species migration in many
cases (Andow et al, 1990). For many floral
species, however, the diffusion approximation
breaks down since many plants transport their
seeds over long distances. Thus, in order to model
plant dispersal properly seeds must be trans-
ported according to a “fat-tailed” (slower than
exponential) distribution (Clark et al., 1998). In
our model with long-range dispersal seeds are
distributed over distance r from the parent ac-
cording to an inverse power-law distribution
f(r) oc r~1, where f (r) is the frequency of dispersal
over distance r. The two principal features of our
model, dispersal and random variations in popu-
lation growth rate, appear to be necessary fea-
tures in order to generate the “patchiness” often
observed in the spatial distribution of abundance
in a wide variety of species (Hastings et al.,
1982; Levin & Paine, 1974; Roughgarden, 1977,
Fasham, 1978).

Each simulation begins with only one indi-
vidual on each protected cell. The results of our
modeling studies are summarized in Table 1. The
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TABLE 1
Summary of simulation results

Migration Survivability Stochasticity Dispersal Fig. 1 (a) Fig. 1 (b) Fig. 1 (¢)
(a) No N/A Environmental Short 20 100 30
(b) No N/A Demographic Short 10 100 15
(c) No N/A Catastrophic Short 35 40 38
(d) Yes Low Environmental Short 45 15 30
(e) Yes High Environmental Short 80 65 100
(f) N/A Low Environmental Long 65 70 65

Numbers are the average species longevity for 100 simulations. (a)-(c) indicate that many small reserve fragments have the
optimal geometry for all types of stochasticity when no migration is allowed. (d) Indicates that one large reserve is optimal
when migration is allowed and the survivability is low in non-protected areas. (¢) Shows that the intermediate case of
a self-similar distribution is optimal when migration is allowed and the survivability in non-protected areas is high. (f) Shows
that species longevity is nearly independent of geometry with the long-range dispersal of seeds appropriate for many floral
species. The uncertainty was estimated to be approximately 5% for (a)-(f) from the difference in the average of the first 50 and

last 50 simulations.

numbers represent species longevity averaged for
100 simulations for each of the three reserve
geometries in Fig. 1. The numbers in Table 1 can
only be compared between different geometries
for a single type of simulation only because differ-
ent types of simulations are parameterized differ-
ently and are not comparable. For each model,
parameters of population growth, dispersal, and
disturbance have been chosen so that the species
longevity was in the order of 100 time steps so
that individuals were able to migrate for some
distance and have their histories influenced by
the particular geometry of the simulation.

5. Results

The effects of different types of stochasticity
are illustrated in the first three simulations
[Table 1(a)-(c)]. For simplicity, migration from
or between reserves is not allowed for these simu-
lations. Individuals undergo a random walk but
can only move to a randomly selected neighbor-
ing cell if the cell is part of a protected area.
Otherwise the individual does not move during
that time step. For the case of catastrophic
stochasticity, we chose to increase the population
with a constant rate and wipe out all individuals
at a random location on the grid within a square
area governed by a power-law distribution
f(A)oc A1, where f(A) is the frequency of a
natural hazard with area 4. One hazard occurs
per time step. A power-law distribution was

chosen since many natural hazards including
forest fires (Malamud et al., 1998), earthquakes
(Gutenberg & Richter, 1954), landslides (Pelletier
et al., 1997) and floods (Turcotte, 1994) obey
power-law frequency-size distributions.

What is similar about Table 1(a)-(c) is that
the reserve geometry with many small reserves
[Fig. 1(b)] is clearly optimal. For the case of
catastrophic stochasticity the average species
longevity differs less between geometries than for
environmental and demographic stochasticity. In
this case the growth dynamics play no role at all.
The average species longevity is determined by
the average return time of the hazard which af-
fects the entire nature reserve. The return time is
inversely proportional to frequency and so will
be greatest for the reserve geometry which covers
the most total area (including adjacent unprotec-
ted areas): Fig. 1(b). For demographic and envir-
onmental stochasticity the results indicate that
there is a significant benefit to diversifying the
reserve into many fragments which individually
have a high rate of local extinction but collective-
ly enable a species to persist for a long time.

When random-walk migration from or be-
tween reserve fragments is allowed, the surviva-
bility of individuals in non-protected areas
becomes an important parameter. It should be
emphasized that we use the phrase “from or
between” reserve fragments because when migra-
tion out of reserve fragments is allowed in our
model, individuals will diffuse out of protected
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areas even when there is only a single large re-
serve and no other reserve fragments to migrate
into. Thus, in the case when migration is allowed
and the geometry has only a single large reserve,
migration will occur from the reserve but not
between reserves since there is only one reserve.

When the survivability is low (50% survival
probability per time step), such that migration
between reserve fragments is rarely or never suc-
cessful, the optimal geometry is a single large
square [Table 1(d)]. Note that this case is differ-
ent from the case of no migration in
Table 1(a)-(c) in which individuals could not
leave their original reserve fragments. Individuals
in Table 1(d) may leave a reserve fragment al-
though, because of the low survivability, few will
reach other reserve fragment. In this case, minim-
izing the total boundary between protected and
non-protected areas is the best option since the
flux of individuals into unprotected areas, which
is proportional to the boundary length, should
be minimized to maximize species longevity. The
total length of the boundary is minimized for one
large reserve [Fig. 1(a)].

When the survivability is higher (80% survival
probability per unit time step) the intermediate
case of the self-similar distribution is optimal. In
this case migration between reserves is often suc-
cessful and the loss of some unsuccessful colonists
in non-protected areas is offset by the benefit of
diversification into several reserves.

Lastly, we considered long-range dispersal. In
Table 1(a)-(e), all new individuals originated at
the same grid point as their parent. In Table 1(f),
however, individuals are dispersed some distance
away according to a distribution inversely depen-
dent on distance. In this case we found, for a wide
range of survivability in protected and non-pro-
tected areas, that geometry made no difference to
within the 5% uncertainty in the average longev-
ity computed with 100 simulations.

It should be noted that our model does not
take into account any habitat deterioration in
protected areas as a result of environmentally
destructive activity in adjacent non-protected
areas. If activities in non-protected areas can
influence the habitat quality in protected areas
(Bierregaard, 1992), small isolated reserve frag-
ments may be the least desirable reserve geo-
metry since they maximize the total length of the

edge zone between protected and non-protected
areas. In addition, when reserve fragments be-
come too small and the migration between them
is low, inbreeding depression and loss of genetic
diversity (Soule & Simberloff, 1986) can make the
populations within reserve fragments unviable.
Both of these factors are not included in the
simulation model but may be very important in
realistic reserve design.

6. Conclusions

These simulations highlight the importance of
the presence or absence of migration between
reserve fragments and the survivability in non-
protected areas as being critical in determining
the theoretically optimal design of nature re-
serves for species longevity. In the absence of
migration, many small reserves are clearly opti-
mal in this model system. If migration is allowed
and the survivability is low then a single large
reserve is best. If survivability is high then the
self-similar distribution similar to the actual dis-
tribution of managed areas in the conterminous
United States is optimal. For long-range disper-
sal of the seeds of plants there is very little differ-
ence between the three geometries.
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