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Chapter 8 the molecular axis. It has become standard practice to carry over the c—7 termino logy ‘

to planar (but nonlinear) molecules, where m is no longer a “good” quantum number.
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In this expanded usage, a 7 orbital is one that is antisymmetric for reflection through
the plane of the molecule, a o orbital being symmetric for that reflection.

Hiickel found that, by treating only the 7 electrons explicitly, it is possible to repro-
duce theoretically many of the observed properties of unsaturated molecules such as
the uniform C—C bond lengths of benzene, the high-energy barrier to internal rotation
about double bonds, and the unusual chemical stability of benzene. Subsequent work
by a large number of investigators has revealed many other useful correlations between
experiment and this simple HMO method for 7 electrons.

Treating only the 7 electrons explicitly and ignoring the o electrons is clearly an
approximation, yet it appears to work surprisingly well. Physically, Hiickel’s approxi-
mation may be viewed as one that has the 7 electrons moving in a potential field due
to the nuclei and a “o core,” which is assumed to be frozen as the 7 electrons move |
about. Mathematically, the o— separability approximation is
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where Eio is taken to be the electronic energy Ep plus the internuclear repulsion
energy Van.

Let us consider the implications of Eq. (8-1). We have already seen (Chapter 5),
that a sum of energies is consistent with a sum of hamiltonians and a product-type

wavefunction. This means that, if Eq. (8-1) is true, the wavefunction of our planar
molecule should be of the form (see Problem 8-1)
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where Vye (i) represents the attraction between electron i and all the nuclei. These
hamiltonians do indeed depend on the separate groups of electrons, but they leave out
the operators for repulsion between ¢ and  electrons:

k n

Ak N 1

By dr=) Y L 9
i=1 j=k+1 ij -

In short, the o and 7 electrons really do interact with each other, and the fact that the
HMO method does not explicitly include such interactions must be kept in mind when
wé consider the applicability of the method to certain problems. Some account of o—
interactions is included implicitly in the method, as we shall see shortly.

[:' 8-3 The Independent n-Electron Assumption

The HMO method assumes further that the wavefunction v, is a product of one-electron
functions and that the hamiltonian J#; is a sum of one-electron operators. Thus, for
nm electrons,

Yr(1,2,...,n) = ¢i(1)9;2)...d1(n) (8-8)
H#r(1,2,...,0) = He () + By Q)+ -+ Hy (n) (8-9)

and

J %1 (D) Hr ()i (Dde(1) _

=E; (8-10)
Jo*i(Hgi(Ddz(1) '
It follows that the total 7 energy E, is a sum of one-electron energies:
Er=E+Ej+---+E (8-11)

This means that the 7 electrons are being treated as though they are independent of each
other, since E; depends only on ¢; and is not influenced by the presence or absence of
an electron in ¢ ;. However, this cannot be correct because 7 electrons in fact interact
strongly with each other. Once again, such interactions will be roughly accounted for
in an implicit way by the HMO method.

The implicit inclusion of interelectronic interactions is possible because we never
actually write down a detailed expression for the 7 one-electron hamiltonian operator
fl,, (7). (We cannot write it down because it results from a w—o separability assumption
and an independent rr-electron assumption, and both assumptions are incorrect.) f[,, @)
is considered to be an “effective” one-electron operator—an operator that somehow
includes the important physical interactions of the problem so that it can lead to a reason-
ably correct energy value E;. A key point is that the HMO method ultimately evaluates
E; via parameters that are evaluated by appeal to experiment. Hence, it is a semiem-
pirical method. Since the experimental numbers must include effects resulting from
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all the interelectronic interactions, it follows that these effects are implicitly included
to some extent in the HMO method through its parameters.

It was pointed out in Chapter 5 that, when the independent electron approximation
[Egs. (8-8)-(8-11)] is taken, all states belonging to the same configuration become
degenerate. In other words, considerations of space-spin symmetry do not affect the
energy in that approximation. Therefore, the HMO method can make no explicit use of
spin orbitals or Slater determinants, and so v/,; is normally taken to be a single product
function as in Eq. (8-8). The Pauli principle is provided for by assigning no more than
two electrons to a single MO.

EXAMPLE 8-1 [f Oy were treated by the HMO method, what would be the form of
the wavefunction and energy for the ground state?

SOLUTION » The ground state configuration for Op is 10;1032032633051”3’):1”3, y X
lmg x1mg y, where we have shown the degenerate members of 7 levels explicitly and in their
real forms. The HMO wavefunction is simply a product of the pi MOs, one for each of the
six pi electrons: 1y x (1) 17y, 5 (2) 17y, y(3) 17y, y(4) 17g x (5) 17g, ,(6). The HMO energy is
2Exu,x +2Ex,u,y+ En g x + Er,g,y, whichreduces to 4 Ex y + 2 Ex g. Note that, because O is
linear, there is no unique molecular plane containing the internuclear axis. Therefore this molecule
has two sets of # MOs, one pair pointing in the x direction, the other pair pointing along y. For a
planar molecule, only one of these pairs would qualify as 7 MOs, as will be seen in the next section.

<

[ ] 8-4 Setting up the Hiickel Determinant

8-4.A ldentifying the Basis Atomic Orbitals and Constructing
a Determinant

The allyl radical, C3Hs, is a planar molecule! with three unsaturated carbon centers
(see Fig. 8-1). The minimal basis set of AOs for this molecule consists of a 1s AO
on each hydrogen and 1s, 2s, 2py, 2p,, and 2p, AOs on each carbon. Of all these
AOs only the 2p, AOs at the three carbons are antisymmetric for reflection through the
molecular plane.

y -
H

!
H\T/ ’\c)/n
|

H H

Figure 8-1 » Sketch of the nuclear framework for the allyl radical. All the nuclei are coplanar.
The z axis is taken to be perpendicular to the plane containing the nuclei.

The minimum energy conformation of the allyl system is planar. We will ignore the deviations from planarity
resulting from vibrational bending of the system.
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environment than it does when in X1 or x3. It seems likely, however, that Hyy is not
very different from Hjy. In each case, we expect the dominant part of the potential to
arise from interactions with the local carbon atom, with more distant atoms playing a
secondary role. Hence, one of the approximations made in the HMO method is that all
H;; are identical if y; is on a carbon atom. The symbol « is used for such integrals.

Thus, for the example at hand, H;; = Hy = H33 = a. The quantity « is often called
the coulomb integral.?

8-4.C The Quantity g

Next, we consider the resonance integrals or bond integrals Hyy, Ho3, and H)3. (The
requirement that IAJH be hermitian plus the fact that the y’s and 1:1,, are real suffices
to make these equal to Hy|, H3p, and Hz), respectively.) The interpretation consistent
with these integrals is that /5, for instance, is the energy of the overlap charge between
x1and x2. Symmetry requires that Hy» = Hs in the allyl system. However, even when
symmetry does not require it, the assumption is made that all H; ; are equal to the same
quantity (called B) when i and ; refer to “neighbors” (i.e., atoms connected by a o

bond). It is further assumed that A; j =0 when i and ; are not neighbors. Therefore,
in the allyl case,

Hiy=Hy =8, H3=0.

8-4.D Overlap Integrals

Since the x’s are normalized, S;; = 1. The dverlaps between neighbors are typically

und 0.3. Nevertheless, in the HMO method, all S j (i # j) are taken to be zero.

hough this seems a fairly drastic approximation, it has been shown to have little
ffect on the qualitative nature of the solutions.

-4.E Further Manipulation of the Determinant

ur determinantal equation for the allyl system is now much simplified. It is

a—E B 0
B a—F B |1=0 (8-15)
| 0 B oa—F

“h each row of the determinant by A corresponds to dividing the whole deter-
it by B3, This will not affect the equality. Letting (o — E)/B = x, we obtain the

x 1 0
I x 1|/=0 (8-16)
0 1 x

oulomb integral” for « is unfortunate since the same name is used for repulsion integrals of the
)(1/r12)x ()x2(2)dv. The quantity o also contains kinetic energy and nuclear—electronic
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o——o—o—° 1 2 -—_— ._'__,
1 2 3 4 1 D 4 H H
Unsaturated part __H_ ’ | o+ 28
CyHy CyHs CyH,~
. Propylene (CoHe)
Butadiene (C4Ho) Cyclobutadiene (C4H) Figure 8-4 » m-Electron configurations and total energies for the ground states of the allyl cation,
1 2 3 4 1234 | radical, and anion.
11x 0 1 1 * ‘
fjx 1 00 1 x
2l x 10 2 <1) ,; l :) (same as etk}ylerge
3o 1 x 1 i 110 x :)“fs]}['.“ﬁg‘l(?ltm%rthod) (It is convenient to number the orbital energies sequentially, starting with the lowest,
410 0 1 x as we have done here.)

Figure 8-3 » HMO determinants for some small systems. We have ‘ju'st seen that bringing three 2p, AQs ‘tog'eth.er in a linea{ z}rral'lgement
causes a splitting into three MO energy levels. This is similar to the splitting into two
energy levels produced when two 1s AOs interact, discussed in connection with H;“ .In
general, n linearly independent separated AOs will lead to # linearly independent MOs.

The ground-state 7-electron configuration of the allyl system is built up by putting
electrons in pairs into the MOs, starting with those of lowest energy. Thus far, we have
been describing our system as the allyl radical. However, since we have as yet made
no use of the number of 7 electrons in the system, our results so far apply equally well
for the allyl cation, radical, or anion.

Configurations and total v energies for these systems in their ground states are

depicted in Fig. 8-4. The total 7 -electron energies are obtained by summing the one-
electron energies, as indicated earlier.
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KAMPLE 8-2 For a planar, unsaturated hydrocarbon having formula C,H y» Where
I the carbons are part of the unsaturated framework, how many pi MOs are there?

SOLUTION »  Each carbon atom brings one 2p,; AO into the basis set, so there are x basis AOs.

These x independent AOs mix to form x independent MOs. <

[ 85 Solving the HMO Determinantal Equation |
for Orbital Energies Solving for the Molecular Orbitals

ded to
The HMO determinantal equation for the allyl system (8-16) can be expan:

still have to find the coefficients that describe the MOs as linear combinations

[
5 i P S. Recall from Chapter 7 that this is done by substituting energy roots of the |
X7 —2x= ular determinant back into the simultaneous equations. For the allyl system, the
NEous equations corresponding to the secular determinant (8-16) are
or
x(x*=2)=0 cix+c =0 (8-19)
s are x =0, x = +/2, and x = —+/2. Recalling the deﬁgitioa c1 +eax : 3 = 8 E:-z(lji
the roots are x =Y, X =~ 4 ; i ,E=07 c c3x = -
?:;Z,conespond respectively to the energies £ =, b= se%iﬂto be the P
How should we interpret these results? Since « 18 Suppo )
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these equations with the secular determinant in Eq. (8-16) and note the
€lation.) As we noted in Chapter 7, homogeneous equations like these can give
8 between ¢y, ¢y, and c3, not their absolute values. So we anticipate using
J.these equations and obtaining absolute values by satisfying the normality
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corresponds
dition. Because we are neglecting overlap between AOs, the latter step p
condition.
to requiring -
C:;‘ +c5+ c% =] (

i { us take x = —~/2
The roots x are, in order of increasing energy, - ++/2. Le

first. Then .
—2c1+ @ =0 o

c1—V2c0+ 3= 0 (8-
cr—+2¢3=0 (8-23c¢)

. . _ \/ECI ]
ring Egs. (8-232) and (8-23c) gives c1 = c3. Equatlon‘(8-523a) gives ¢2
El(;r:rrt)i?lg t%xese relations into the normality equation (8-22) give

A = 8'2 )
Cl 1 5 Cl |
i i i alen
k dl erence Wthh Sign we ChOOSC orcg s nce any Wa.Ve unction 18 qUI
h makes no “ I l 1 : 1 I 1S € A\ l t
to ltS negati\/e. (BO[h gi\/e the same 'lp ) ChOOSlng [ = +—2 glVeS

! : c ! (8-26)
CIZE, 02=7_2-’ 3=

2
These coefficients define our lowest-energy MO, ¢1:

bt x50 (8-27)
o1 X1 + ;) 5

0and x = +«/§. The results are
1 1 ¥
. = —— ——=X3
(x=0): ¢2 ﬁXI 7

1 1 1
(x=+«/i>: ¢3 = 7X1 ——ﬁX2+ 2 X3

A similar approach may be taken for x =

§

The allyl system results when three 7 AOs interact in a line
Hiy = Hy3 = B, but Hjz =

Section 8-7 The Cyclopropenyl System: Handling Degeneracies
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Figure 8-5 »  Sketches of the allyl system MOs. (a) emphasizes AO signs and magnitudes.
(b) resembles more closely the actual contours of the MOs.

SOLUTION » HMO theory favors neither. The difference between linear and bent allyl shows
up as a difference in C; — C; — C3 angle and in Cj to C3 distance. The HMO method has no

angular-dependent features and explicitly omits interactions between non-neighbor carbons, like
C| and C3.

<
Curceny

7 The Cyclopropenyl System: Handling Degeneracies

ar arrangement wherein
0. We can also treat the situation where the three 7 AOs

approach each other on vertices of an ever-shrinking equilateral triangle. In this case,
€ach AO interacts equally with the other two. This triangular system is the cyclo-
propenyl system C3H3 shown in Fig. 8-6.

The HMO determinantal equation for this system is

ketched in Fig. 8-5. - 3
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EXAMPLE 8-3 According to HMO theory, do the 7 electrons fayor a lINEe
bent allyl radical?

REUPUTRR————

H

Ure 8-6 »  The cyclopropenyl system (all nuclei are coplanar).
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This equation can be factored as

(x+2)x—Dx—-1)=0 (8-31)

=-2,+1,+1L
herefore, the roots are x 2,+1, .
' Since the root x = 1 occurs twice, we can expect there to be two independent HMOs

having the same energy—a doubly degenerate level. The energy scilertnenasr;d(lg)r(g)ili,r:
state electron configuration for the cyclopropenyl rad1_ca1 (threff g e;l etc roiS i
atotal E, of 3a +38. We can surmise from tl.lesc oFbltal energ.les t. a‘ b1 L

. MO, whereas ¢, and ¢3 are predominantly antlbondmg.. To see if this is .re e e
nod;d properties of the MOs, let us solve for the coefficients. The equations ¢

with the HMO determinant and with orbital normality are
cix+cp +c3 =0
ci+cx+ez =0 (8-32)
c1+c +ex=0

c% + c% + c% =1
Setting x = —2 and solving gives

1 -
o1= ! X1+ —=x2+—7=x3 (8-33)

;__%_— O — Ez=E=a—p (x=+1
E = o+ 28 x =-2)
(1

For this MO, the coefficients are all of the same sign, and so the AOs show phase

interactions are bonding.
reement across all bonds and all in . : ' ‘
* To find ¢ and ¢3 is trickier. We begin by inserting x = +1 into our simultaneous

equations. This gives
c1+cy+c3 =0 (three times) (8-34)
d+3+cg=1 (8-35)

With three unknowns and two equations, an infinite number of §olutlon§ is posmﬁlet;
Let us pick a convenient one: ¢; = —cz,¢c3=0. The normalization requirement the

gives c1 = 1/«/§, ¢y =—1/~/2, c3=0. Let us call this solution ¢y:

b i — e (8-36)
¢ = 7—in ﬁxz

in an infini f possibilities, so let us pick
i d to find ¢3. There remain an infinite number o : -
ZZ;STII ::ei:/ «/0—2_ c 230, c3=-—1/ /2. We have used our experience with ¢ to choose

o, . . . . of
¢’s that guarantee a normalized ¢3. Also, it is clear that ¢3 is linearly independent |

]
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¢, since they contain different AOs. But it is desirable to have @3 orthogonal to ¢;.
Let us test ¢ and ¢;3 to see if they are orthogonal:

S=J¢z¢3dv=%f(x;—x:)(xl—xa)dv

UML-IWLJMLJX ,d:}=% (8-37)

Since S #0, ¢, and ¢3 are nonorthogonal. We can project out that part of ¢3 that
is orthogonal to ¢, by using the Schmidt orthogonalization procedure described in
Section 6-10. We seek a new function ¢ given by

N

¢3=¢3 — Sy (8-38)
where .
5= [ apadv=3 (8-39)
Therefore,
1 1
A=y — —p = —— -2 8-40
3=¢3 2¢2 Wi X1+ x2—2x3) (8-40)

This function is orthogonal to ¢, but is not normalized. Renormalizing gives

1 .
¢35 = 7 X1+ X2 —2x3) (8-41)

In summary, to produce HMO coefficients for degenerate MOs, pick any two indepen-
dent solutions from the infinite choice available, and orthogonalize one of them to the
other using the Schmidt (or any other) orthogonalization procedure.

The MOs for the cyclopropenyl system as seen from above the molecular plane are
sketched in Fig. 8-7. The MO ¢2 can be seen to have both antibonding (C;—C;) and
nonbonding (C;—C3, C,—-C3) interactions. ¢5 has antibonding (C;-C3, C,—C3) and
bonding (C;—C3) interactions. The interactions are of such size and number as to give
an equal net energy value (o — ) in each case. Since nodal planes produce antibonding
or nonbonding situations, it is not surprising that higher and higher-energy HMOs in a

—_——

o

Figure 8-7 » The HMOs for the cyclopropenyl system: (a) ¢ = (1 /ﬁ)(Xl +x2+x3); (b) dp =

1/V2)(x1 = x2) () ¢4 = (1/+/6)(x1 + x2 — 2x3). The nodal planes intersect the molecular plane
at the dashed lines. '

O O
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(a) (b)
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system display more and more nodal planes. Notice that the MOs ¢ and ¢4 have the
same number of nodal planes (one, not counting the one in the molecular plane) but
that these planes are perpendicular to each other. This is a common feature of some
degenerate, orthogonal MOs in cyclic molecules.

It is important to notice the symmetry characteristics of these MOs. ¢ is either
symmetric or antisymmetric for every symmetry operation of the molecule. (It is
antisymmetric for reflection through the molecular plane, symmetric for rotation about
the threefold axis, etc.) This must be so for any nondegenerate MO. But the degenerate
MOs ¢, and @5 are neither symmetric nor antisymmetric for certain operations. (¢ is
antisymmetric for reflection through the plane indicated by the dashed line in Fig. 8-7,
but is neither symmetric nor antisymmetric for rotation about the threefold axis by
120°.) In fact, one can easily show that, given a cycle with an odd number of centers,
each with one AO of acommon type, there is but one way to combine the AOs (to form a
real MO) so that the result is symmetric or antisymmetric for all rotations and reflections
of the cycle. Hence, an HMO calculation for a three-, five, seven-, ... membered ring
can give only one nondegenerate MO. However, for a cycle containing an even number
of centers, the analogous argument shows that two nondegenerate MOs exist.

I:l 8-8 Charge Distributions from HMOs

Now that we have a method that provides us with orbitals and orbital energies, it should
be possible to get information about the way the 7 -electron charge is distributed in the
system by squaring the total wavefunction V. In the case of the neutral allyl radical,
we have (taking ¥ to be a simple product of MOs)

Y =¢1(1D1(2)2(3) (8-42)

Hence, the probability for simultaneously finding electron 1 in dv(1), electron 2 in
dv(2) and electron 3 in dv(3) is

¥2(1,2,3)dv(1)dv(2)dv(3) =2 (1)p}(2)¢3(3)dv(1)dv(2)dv(3) - (843)

For most physical properties of interest, we need to know the probability for finding an
electron in a three-dimensional volume element dv. Since the probability for finding
an electron in dv is the sum of the probabilities for finding each electron there, the
one-electron density function p for the allyl radical is

p =20 + 3 (8-44)

where we have suppressed the index for the electron. If we integrate p over all space,

we obtain a value of three. This means we are certain of finding a total 7 chargeé

corresponding to three 7 electrons in the system.
To find out how the 7 charge is distributed in the molecule, let us express o in terms

of AOs. First, we write ¢12 and d)% separately:
1, 1

1 1 1 1
5 _ 1 1 g L a, L B3 !
(o 4X1+2X2+4X3+ﬁX1X2+ﬁX2X3+2X1X3

1 1
2 1l o L o
¢2—2X1+2X3 X1X3
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If we were to integrate ¢% we would obtain

—iy |
P B L] o
—N—

/¢2dv 1/ 2ot [ 240 ] !
= - = 2
1 1M U+2/X2 dU+1/X3 dv+ﬁ/X1xsz

1 1
+7§/X2X3dv+§/X1X3du
1 1 1

+5+
4 2 4 (8-46)

IhUS, one i i
electron in d)l shows up, upon 1ntegration, as being “distributed” 1 at
4

carbon 1, 1 1
5 atcarbon 2, and 7 atcarbon 3. We say that the atomic w-electron densities

422> 4 P 9 n C 5 I p 1 1 ) f a um late

th i
" oers?hfZgal;Ir;ls ;f;)crl.alllth; e;;ac;rons, we arrive at a total 7 -electron density for each carbon
1cal, Table 8-1 shows that each atom has a 7 i .
/1 . . -electron density of uni
Generalizing this approach gives for the total 7 -electron density ¢; on atgm iuth

all MOs
e 2
gi= Y nick (8-47)
k

‘I:f)ecr:ullc) :.the MO lindex, cik is the coefficient for an AO on atom i in MO k. and N, the
1on number,” is the number of electrons ©, 1 i : ’
un : , 1, or 2) in MO k. (In th
casIefsW\Zherelc,}/é is complex, cizk in Eq. (8-47) must be replaced by c?‘kcik.g e
- daplp y Eq. .(8—47) to the cyclopropenyl radical, we encounter a’n ambiguity. If th
paired electron is assumed to be in MO ¢, of Fig. 8-7, we obtain g = p=1 p = 43
I(?IR/Itge othﬁr hand, if the unpaired electron is taken to be in ¢, q1=q2= g q36—’%—3 ;“lf ‘
N il:(;etb 0(}11 r;afsolves this ambiguity by assuming that each of the dege?l’erate Dglbs iz
Showpthe : \)lfer :1 : an electron.f This has the effect of forcing the charge distribution to
symmetry of the molecule. In this exa i
iy : . mple, it follows that g; =g, =
Zfectron’l:;z genf.:ral 'rule is that, .for purposes of calculating electron distribu(iilonsqzthe
upation 1s averaged in any set of partially occupied, degenerate MOs ’

TABI...E 8-1 » HMO n Electron
Densities in the Allyl Radical

Carbon atom

Electron 1 9 3

Bl— B— =
O NI— N|—
e e e

-
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4gee Salem [1, Chapter 8].
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¢ would then give us a “bond order” of 2/+/2 = 1.414. It is more convenient in practice
to divide this number in half, because then the calculated -bond order for ethylene
turns out to be unity rather than two. Since ethylene has one 7 -bond, this can be seen
to be a more sensible index.

As aresult of these considerations, the 7 -bond order (sometimes called mobile bond
order) of the allyl radical is 1/+/2 =0.707 in each bond. (Electrons in ¢2 make no
contribution to bond order since ¢, vanishes. This is consistent with the nonbonding
label for ¢».)

Generalizing the argument gives, for p;;, the m-bond order between nearest-
neighbor atoms i and j:

all MOs
Dij= Z RKCikC jk (8-48)
k

where the symbols have the same meanings as in Eq. (8-46). In cases in which partially
filled degenerate MOs are encountered, the averaging procedure described in connection
with electron densities must be employed for bond orders as well.

EXAMPLE 8-4 Calculate p3 for the cyclopropenyl radical, using data in Fig. 8-7.

SOLUTION » There are 2 electrons in ¢ and the coefficients on atoms 1 and 3 are %, S0
this MO contributes 2 x (%)2 =2/3. We allocate % electron to ¢,. Since ¢3 =0 in this MO,
the contribution to p)3 is zero. The remaining % electron goes to ¢3, yielding a contribution of
%xﬁx%é:%l.SOpB:%—%:%. <

8-9 Some Simplifying Generalizations

Thus far we have presented the bare bones of the HMO method using fairly small
systems as examples. If we try to apply this method directly to larger molecules, it is
very cumbersome. A ten-carbon-atom system leads to a 10 x 10 HMO determinant.
Expanding and solving this for roots and coefficients is tedious. However, there are
some short cuts available for certain cases. In the event that the system is too compli-
cated to yield to these, one can use computer programs which are readily available.
For straight chain and monocyclic planar, conjugated hydrocarbon systems, simple

formulas exist for HMO energy roots and coefficients. These are derivable from the

very simple forms of the HMO determinants for such systems.> We state the results

Without proof.

For a straight chain of n unsaturated carbons numbered sequentially,

x ==2coslkn/(n+1)], k=1,2,...,n (8-49)
i = [2/(n + D12 sinfkln/(n + 1)] (8-50)

Where / is the atom index and & the MO index.

3See Coulson [2].
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For a cyclic polyene of n carbons,

A
x = —2cos(2¢k/n), k=0,1,...,n—1 (8-51)
e = n~ P expl2mik(l = 1)/nl, j=af—1 (8-52)

The coefficients derived from Eq. (8-52) for monocyclic polyenes will be complex
when the MO is one of a degenerate pair. Insuch cases one may take linear combinations
of these degenerate MOs to produce MOs with real coefficients, if one desires.

There is also a diagrammatic way to find the energy levels for linear and monocyclic
systems.6 Let us consider monocycles first. One begins by drawing a circle of radius
2|B|. Into this circle inscribe the cycle, point down, as shown in Fig. 8-9 for benzene.
Project sideways the points where the polygon intersects the circle. The positions of
these projections correspond to the HMO energy levels if the circle center is assumed
to be at E = o (see Fig. 8-9). The number of intersections at a given energy is identical
to the degeneracy. The numerical values for E are often obtainable from such a sketch
by inspection or simple trigonometry.

For straight chains, a modified version of the above method may be used: For an n-
carbon chain, inscribe a cycle with 21 + 2 carbons into the circle as before. Projecting
out all intersections except the highest and lowest, and ignoring degeneracies gives the
proper roots. This is exemplified for the allyl system in Fig. 8-10.

Examination of the energy levels in Figs. 8-9 and 8-10 reveals that the orbital energies
are symmetrically disposed about E =¢. Why is this so? Consider the allyl system.
The lowest-energy MO has two bonding interactions. The highest-energy MO differs
only in that these interactions are now antibonding. [See Fig. 8-5 and note that the
coefficients in ¢ and ¢3 are identical except for sign in Egs. (8-27) and (8-29).] The
role of the B terms is thus reversed and so they act to raise the orbital energy for ¢3 just
as much as they lower it for ¢1. A similar situation holds for benzene. As we will see
shortly, the lowest energy corresponds to an MO without nodes between atoms, SO this
is a totally bonding MO. The highest-energy MO has nodal planes between all neighbor

carbons, and so every interaction is antibonding. An analogous argument holds for the
degenerate pairs of benzene MOs. These observations suggest that the energy of an

/\ { - Eg=a—20
_ ———— Eys=0—8
U B EE B S E=a
A A

Y v—/l"‘ Y V\). - (o

RN - [ s — Ez,a=°‘+B
\\/ v

_— E, =a+ 20 ¢\

E

Figure 8-9 » HMO energy levels for benzene produced by projecting intersections of a hexags
with a circle of radius 2 |8l.

65ee Frost and Musulin [3].
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/ \ E,ia_\/z,
\\ /
\ 7 E, =a + /3B

Figure 8-10 » HMO ene
: rgy levels for the allyl system (n = j
sections of an octagon (n =2 x 3 +2) with a circle zf radit(l’; 2_|;)| produced by projecting the nter-

MO should i i
Mo s indee(ti)ihf;xpress1ble as a function of the net bond order associated with it. and
case. The energy of the ith MO is given by the expression -

e A
= [ it = | S cuixih Y eunav (8-53)
k /
:Z ck-c1~/ Hyxid
k ZI: icti | xiBxxidv (8-54)

l
nflgh :IS’ It EqL als /é : :thEI 1se 1t zuus}lss' IIEH:E € [na) rite

neighbors

Ei=) cla i Cli
; ; 2o+ ; criciiB (8-55)

However, c¢2. i . .
» ck-c’- ; ,S” Is gk, the electron density at atom k due to one electron in MO
iCli 18 pii,i, the bond order between atoms & and / due to an elect i gi’
ron in ¢;.

Therefore,

neighbors

E: = .
Gi,io+2 E .
! Xk: £ Pii,i B (8-56)

k<l

. F l s ? : 1 2ge 1 : I' ﬁ .
S

bonds

i B kg; Pii (8-57)

he total T - y -
k ele i
. S

bonds

Ex =na+2
4 B ; Pkl (8-58)

b ,Zlgelrsg it:: (ti(?tal Jlr-bond order between neighbors k and /. Hence, the individual
: irectly reflect the amount of bonding or antibondin’g describ 1d 1;3
cd by

{

* MOs, and th
N ) e total energy refl . .
ctrons (ogether. gy reflects the net bonding or antibonding due to all the 7

e




