FUNDAMENTALS OF METAL ALLOYS,EQUILIBRIUM DIAGRAMSChapter 4

ME-215 Engineering Materials and Processes

4.2 What is a Phase?

- \bullet Phase is a form of material having characteristic structure and properties.
- •More precisely: form of material with identifiable composition (chemistry), definable structure, and distinctive boundaries (interfaces) which separate it from other phases.

ME-215 Engineering Materials and Processes

4.2 Phases

- Phase can be continuous (air in the room) or discontinuous (salt grains in the shaker).
- Gas, liquid or solid.
- Pure substance or solution (uniform structure throughout).

4.3 Equilibrium Phase Diagrams

- Graphic mapping of the natural tendencies of a material or a material system (equilibrium for all possible conditions).
- Primary variables: temperature, pressure and composition.
- P-T diagram (the simplest).

4.3 Temperature-Composition Diagrams

- Engineering processes conducted at atmospheric pressure (P/T variations).
- The most common: temperaturecomposition phase diagrams.

4.3 Cooling Curves

• Cooling curves for NaCl-H20 combinations:

4.3 Cooling Curves

• Partial equilibrium diagram of NaCl-H20 system

ME-215 Engineering Materials and Processes

4.3 Solubility

- •Solubility limits.
- •Degree of solubility determines properties.
- • I-Two metals completely soluble in each other.
- • II- Two metals soluble in liquid state and insoluble in solid state.
- • III-Two metals soluble in liquid state and partially soluble in solid state.

ME-215 Engineering Materials and Processes

4.3 Complete Solubility

• Copper-Nickel equilibrium diagram

4.3 Partial Solid Solubility

- •Degree of solubility depends on temperature
- o• At max. solubility, 183° C: lead holds up to 19.2 wt% tin in a single phase solution, and tin holds up to 2.5wt% lead and still be a single phase.

ME-215 Engineering Materials and Processes

4.3 Utilization of Diagrams

ME-215 Engineering Materials and Processes

4.3 Example problem

Composition $-$ % B

Liquid phase amount $=$ $\frac{56}{72-18}$ \times 100% $=$ 33.33 % *by mass* $=\frac{36-18}{72-18} \times 100\% =$

Solid phase amount $=$ $\frac{12}{72-18}$ \times 100% = 66.67% *by mass* $=\frac{72-36}{72-18} \times 100\% =$

ME-215 Engineering Materials and Processes

4.3 Utilization of Diagrams

- •The phases present.
- •Composition of each phase (single phase region or two phase region).
- • In two phase region a tie-line should be constructed.
- •The amount of each phase present: leverlaw calculation using a tie-line.

4.3 Three Phase Reactions

Peritectoid

 $(S_1 + S_2 \rightarrow S_3)$

Stoichiometric intermetallic compound

 $L_1 + L_2$

 α

Syntectic

 $(L_1 + L_2 \rightarrow S_1)$

 L_1

 $L_1 + \alpha$

 $L₂$

 $\alpha + L_2$

Non-stoichiometric intermetallic compound

ME-215 Engineering Materials and Processes

Eutectoid

 $(S_1 \to S_2 + S_3)$

4.4 Iron-Carbon Equilibrium Diagram

ME-215 Engineering Materials and Processes

4.4 Iron-Carbon Equilibrium Diagram

- δ *ferrite*, (present only at extreme temperatures) [−] *ferrite*
- Austenite, (FCC, high formability, high solubility of C, α over 2%C can be dissolved in it, most of heat treatments begin with this single phase).
- Ferrite, BCC, stable form of iron below 912 deg.C, only $\frac{1}{2}$ and $\frac{1}{2}$ up to 0.02 wt\% C in solid solution and leads to two phase mixture in most of steels.
- Cementite (iron-carbide), stoichiometric intermetalic
compound hard brittle exact molting point unknown compound, hard, brittle, exact melting point unknown.
- Currie point (770 deg. C), atomic level nonmagnetic-to-
magnetic transition magnetic transition.

ME-215 Engineering Materials and Processes

4.4 Three Phase Reactions

- \bullet Peritectic, at 1495 deg.C, with low wt% C alloys (almost no engineering importance).
- \bullet Eutectic, at 1148 deg.C, with $4.3wt\%$ C, hapends to all alloys of more than 2.11wt% C and they are called cast irons.
- •Eutectoid, at 727 deg.C with eutectoid composition of 0.77wt% C, alloys bellow 2.11%C miss the eutectic reaction to create two-phase mixture. They are steels.

Austenite $e_{\text{0.77}\%C;FCC} \rightarrow Ferrite_{\text{0.02}\%C;BCC}+Cementite_{\text{6.67}\%C}$

ME-215 Engineering Materials and Processes

4.5 Eutectoid Steel

- At 0.77% C by cooling from austenite (FCC) changes to BCCferrite (max 0.02%C) and excess C forms intermetalic cementite.
- Chemical crystalline solid separation gives fine mixture of ferrite and cementite. Perlite (right), 1000X.

4.5 Hypoeutectoid Steel

- With less than 0.77% C from austenite by cooling transformation leads to growth of low-C ferrite growth. At 727deg.C austenite transforms in to pearlite.
- Mixture of proeutectoid ferrite (white) and regions of pearlite forms.
- Magnification 500X.

ME-215 Engineering Materials and Processes

4.5 Hypereutectoid Steel

- With more than $0.77\%C$, from austenite transformation leads to proeutectoid primary cementite and secondary ferrite. At 727 deg.C austenite changes to pearlite.
- Structure of primary cementite and pearlite forms.
- •Magnification 500X.

4.6 Cast Irons

- Iron-Carbon alloys of 2.11%C or more are cast irons.
- Typical composition: 2.0-
4.0%C 0.5.3.0% Si Joss 4.0%C,0.5-3.0% Si, less than 1.0% Mn and less than 0.2% S.
- Si-substitutes partially for
C and promotes formation C and promotes formation of graphite as the carbon rich component instead Fe3C.

4.6 Gray Cast Iron

- Composes of: 2.5-4.0%C, 1.0-
3.0%Si and 0.4.1.0% Mn 3.0%Si and 0.4-1.0% Mn.
- Microstructure: 3-D graphite
flakes formed during outpotic flakes formed during eutectic reaction. They have pointed edges to act as voids and crack initiation sites.
- Sold by class (class 20 has min.
tongilo strongth of 20,000 pgi is tensile strength of 20,000 psi is a high C-equivalent metal in ferrite matrix). Class 40 would have pearlite matrix.

ME-215 Engineering Materials and Processes

4.6 Gray Cast Iron

- •Properties: excellent compressive strength, excellent machinability, good resistance to adhesive wear (self lubrication due to graphite flakes), outstanding damping capacity (graphite flakes absorb transmitted energy), good corrosion resistance and it has good fluidity needed for casting operations.
- •It is widely used, especially for large
continuous parts subjected to compress equipment parts subjected to compressive loads and vibrations.

ME-215 Engineering Materials and Processes

4.6 White Cast Iron

- •Composes of: 1.8-3.6%C, 0.5-1.9%Si and
0.25.0.8% Mp 0.25-0.8%Mn.
- All of its carbon is in the form of ironcarbide (Fe3C). It is called white because of distinctive white fracture surface.
- \bullet It is very hard and brittle (a lot of Fe3C).
- •It is used where a high wear resistance is
dominant requirement (coupled hard dominant requirement (coupled hard martensite matrix and iron-carbide). Thin coatings over steel (mill rolls).

4.6 Malleable Cast Iron

- Formed by extensive heat
treatment around 000 deg treatment around 900 degC, Fe3C will dissociate and form irregular shaped graphite nodules. Rapid cooling restricts production amount to up to 5 kg. Less voids and notches.
- Ferritic MCI: 10% EL,35 ksi yield strength, 50 ksi tensile strength. Excellent impact strength, good corrosion resistance and good machinability.

Veljko Samardzic

ME-215 Engineering Materials and Processes

4.6 Pearlitic Malleable Cast Iron

- •Pearlitic MCI: by rapid cooling through eutectic transformation of austenite to pearlite or martensite matrix.
- \bullet Composition: 1-4% EL, 45-85 ksi yield strength, 65-105 ksi tensile strength. Not as machinable as ferritic malleable cast iron.

Ductile Cast Iron

- •Without a heat treatment by addition of ferrosilicon (MgFeSi) formation of smooth spheres (nodules) of graphite is promoted.
- •Properties: 2-18% EL, 40-90 ksi yield strength, 60-120 ksi tensile strength.
- •Attractive engineering material due to: good ductility, high strength, toughness, wear resistance, machinability and low melting point castability.

4.6 Malleable Cast Iron

- Ductile iron with ferrite matrix (top) and pearlite matrix (bottom) at 500X.
- Spheroidal shape of the graphite nodule is achieved in each case.

ME-215 Engineering Materials and Processes

Microstructure

• Globular cast iron

ME-215 Engineering Materials and Processes

BCC Unit Cell

ME-215 Engineering Materials and Processes

FCC Unit Cell

ME-215 Engineering Materials and Processes