Solvní živcová termometrie

cvičení

Použijte mixing modely

- Elkins a Grove 1990
- Fuhrman a Lindsley 1988 Zvolené P-T podmínky
- 650°C, 5 kbar
- 850°C, 5 kbar
- 1050°C, 5 kbar
- 850°C, 1 kbar
- 850°C, 5 kbar
- 850°C, 10 kbar

pozor, v jakém rozsahu je daný model nakalibrován!

Přístup k editaci mixing-modelů

Výběr mixing modelu pro modelování a výpočet.

Použijte mixing modely

- Elkins a Grove 1990
- Fuhrman a Lindsley 1988

Zvolené P-T podmínky

- 650°C, 5 kbar
- 850°C, 5 kbar
- 1050°C, 5 kbar
- 850°C, 1 kbar
- 850°C, 5 kbar
- 850°C, 10 kbar

Untitled - SolvCalc le Edit View Models Calculation Drav Calculation Drav	Tools Options Help		
	alternativně Calculatio	$pns \rightarrow SolvusCalc$	
	SolvusCalc Input Pressure (Kbar) 5 Temperature (C)		
	Calculate Cancel		

Použijte mixing modely

- Elkins a Grove 1990
- Fuhrman a Lindsley 1988

pozor, v jakém rozsahu PT je daný model nakalibrován!

Zvolené P-T podmínky

- 650°C, 5 kbar
- 850°C, 5 kbar
- 1050°C, 5 kbar
- 850°C. 1 kbar
- 850°C, 5 kbar

An 850°C, 5 kbar Fuhrman a Lindsley 1988 Or

S01:	(Mc	ole Base	e)				
	Mar	gules M	Model: H	Tuhrman	and Lin	dsley (1988)
	Ten	nperatur	ce(C) =	850.00) Pres	sure(Kba	ar) =
5.000	0 0						
No.	Σ	KPlAb	XPlOr	XPlAn	XAfAb	XAfOr	XAfAn
	0	0	0.0618	0.9382	0	0.9707	0.0293
	1	0.0161	0.0556	0.9282	0.0104	0.9598	0.0298
	2	0.0304	0.0514	0.9182	0.0203	0.9494	0.0303
	3	0.0435	0.0483	0.9082	0.0296	0.9395	0.0308
	4	0.0557	0.0461	0.8982	0.0386	0.9301	0.0314
	5	0.0673	0.0444	0.8882	0.047	0.9211	0.0319
	6	0.0786	0.0432	0.8782	0.0551	0.9125	0.0324
	7	0.0895	0.0423	0.8682	0.0626	0.9044	0.033
	8	0.1001	0.0417	0.8582	0.0698	0.8967	0.0335
	9	0.1105	0.0413	0.8482	0.0766	0.8894	0.034
	10	0.1207	0.041	0.8382	0.0829	0.8826	0.0345

...

Použijte mixing model

Holland a Powell 2003 (používán zejména pro pseudosekce v Thermocalcu, Perple_X atd.)

a P-T podmínky 850°C a 5 kbar

Tento typ mixing-modelu (asymetrický formalismus) není kompatibilní s aplikací Solvcalc.

Solvcalc kromě toho může modelovat pouze do tlaku 15 kbar (např. některé vysokotlaké granulity Českého masivu mají vrcholové podmínky metamorfózy za vyššího tlaku – viz např. Kotková 2007, O'Brien a Rötzler 2003).

pozn. Dolejš (2008) modifikoval model Holland a Powell 2003 na základě HP/HT experimentů, viz také Nahodilová et al. (2012) – možné užití pro tlaky kolem 20 kbar a T kolem 1000°C

Postup:

Příprava databáze

Příprava INPUT souboru THERIN

Spuštění programu Therter z příkazového řádku

Definice úlohy

Výpočet

Spuštění rutiny explot pro vykreslení diagramu

Otevření diagramu v GhostScriptu

Extrakce dat o složení párů Pl - Afs

Postup:

Příprava databáze

Příprava INPUT souboru THERIN Spuštění programu Therter z příkazového řádku Definice úlohy Výpočet Spuštění rutiny explot pro vykreslení diagramu Otevření diagramu v GhostScriptu Extrakce dat o složení párů Pl - Afs

TheriakDominoWIN/Programs by měl obsahovat databázi z Thermocalcu **např. tcdb**55c2d náš preferovaný model musí být aktivní

```
1_____
! feldspar tc 325
! "ternary" feldspar from the supplementary material (file nckfmash) in:
! Baldwin J.A. et al. (2005): Modelling of mineral equilibria in ultrahigh-
! temperature metamorphic rocks from the AnapolisDItaucu Complex, central Brazil
! J. metamorphic Geol., 2005, 23, 511Đ531
! Based on: Holland, TJB & Powell, R (2003) Activity-composition relations for
! phases in petrological calculations: an asymmetric multicomponent formulation.
! Contributions to Mineralogy and Petrology, 145, 492-501.
*****MINERAL DATA***** Feldspar new definition in: baldwin et al. 2005
anorthiteC1
             CA(1)AL(2)SI(2)O(8) anc1
                                      nh
        0.0 7030.000 4.6600
ST
                                 0.0000
COM anorthite[1] 0 anorthite
***** SOLUTION DATA
FSP (MARGULES, IDEAL) M(1):Na, K, Ca
                                              pro "deaktivaci" se vepisuje MuNERAL
 sanidine K 1.0 0 0
 high-albite Na 0.643 0 0
                                              DATA, SuLUTION, MuRGULES atd.
 anorthiteC1 Ca 1.0 0
****
     MARGULE ARAMETER ***** as in tc 3.25
high-albite - anorthiteC1
12 3100. 0.00 0.00
sanidine - high-albite
12 25100. 10.80 0.338
sanidine - anorthiteC1
12 40000. 0.00 0.00
1_____
```

Postup:

Příprava databáze

Příprava INPUT souboru THERIN

Spuštění programu Therter z příkazového řádku

Definice úlohy

Výpočet

Spuštění rutiny explot pro vykreslení diagramu

Otevření diagramu v GhostScriptu

Extrakce dat o složení párů Pl - Afs

v poznámkovém bloku přepište vstupní soubor THERIN *TheriakDominoWIN/Programs/THERIN*

kód v souboru Therin:

0 NA(10)AL(10)SI(30)O(80)K(10)AL(10)SI(30)O(80)CA(10)AL(20)SI(20)O(80) *

- za vykřičníky vepsány poznámky (v původním souboru mnoho řádků poznámek, nemají na běh programu vliv)
- Teplota a tlak, která však slouží pro rutinu Theriak. <u>Nechat být.</u> K oddělování se používají <u>minimálně</u> dvě mezery !!
- Nadefinujte složení např. v následující podobě. Pro prvky se používají <u>všechna písmena velká</u>. U číselné hodnoty lze zadávat i v jednotkách NA(1)AL(1)... nebo stovkách NA(100)AL(100)..., velikost systému pro náš účel nehraje roli. Nezapomeňte na konec přidat <u>hvězdičku</u> (*) !!!

Postup: Příprava databáze Příprava INPUT souboru THERIN **Spuštění programu Therter z příkazového řádku Definice úlohy Výpočet** Spuštění rutiny explot pro vykreslení diagramu Otevření diagramu v GhostScriptu Extrakce dat o složení párů PI - Afs

TheriakDominoWIN/Programs/ therter.exe

database definition

exit THERTER

------Enter ["?" | CR | "files" | database filename] <JUN92.bs>? tcdb55c2d název databáze endmembers AL CA Е Κ NA 0 02 SI abL abh anL kspL ky and cats coe jd kals anc1 cor crst geh gr lime lrn pswo aL8 rnk san silL mic ne al sill 8 sill stv trd wo Enter ["?" | "list" | CR | endmember 1 (formula 1)] <Ab>? výběr koncových abh Enter ["?" | "list" | CR | endmember 2 (formula 2)] <Kfs>? členů diagramu san Enter ["?" | "list" | CR | endmember 3 (formula 3)] <An>? an conditions ----definice P-T Enter [CR | T(C) P(Bar)] < 850.00 5000.00>? 850 5000 pozn. oddělit dvěma mezerami!!!!!! podmínek Enter ["?" | CR | number of seeds] <0>? stisknout enter Enter ["?" | CR | scan-density tolerance] <11 0.02>? stisknout enter larn-bredigite -----> phase excluded (outside ternary system) -----> phase excluded (outside ternary system) grossular -----> phase excluded (outside ternary system) andalusite considered phases: high-albite microcline sanidine anorthite anorthite.liq K-feldspar.liq albite.lig anorthiteC1 TIELINE 1/ 72

Postup:

Příprava databáze

Příprava INPUT souboru THERIN

Spuštění programu Therter z příkazového řádku

Definice úlohy

Výpočet

Spuštění rutiny explot pro vykreslení diagramu

Otevření diagramu plot.PS v GhostScriptu Extrakce dat o složení párů Pl - Afs Program EXPLOT, Version (dd.mm.yy) 03.01.2012 (Windows, gfortran)

"Create a PostScritp(TM) file from graphics input"

Written by:

Christian de Capitani (Basel, Switzerland) E-mail: christian.decapitani@unibas.ch

Input dialogue and help by: Konstantin Petrakakis (Vienna, Austria) E-mail: konstantin.petrakakis@univie.ac.at

log-file used: D:\Programs\explot.last
Enter ["?" | CR | graphics file name] <clean>?

plot

working directory: D:\Programs\ 72 TIELINES READ. exit EXPLOT

tato rutina vytvořila soubor s diagramem *plot.PS* (*PostScript file format*), který lze otevřít např. v GhostScriptu, ale také v některých grafických programech

Postup:

Příprava databáze

Příprava INPUT souboru THERIN

Spuštění programu Therter z příkazového řádku

Definice úlohy

Výpočet

Spuštění rutiny explot pro vykreslení diagramu

Otevření diagramu plot.PS v GhostScriptu

Extrakce dat o složení párů Pl - Afs

	•••				
Postup:	PSYM	Т	[·] = 850.00 [C] 16 9 0 0.5	0000
Příprava databáze	PSYM	P :	= 5000.0 [Ba	r] 16 9 0 0.5	0 0 -2 0
	ECKEN	abh	san	an	0.5 0.5
Příprava INPUT souboru THERIN	0.000	0000	0.984489	0.015511	
Spuštění programu Therter z příkazového řádku	0.000	000	0.015511	0.984489	
	0.005	627	0.978749	0.015625	
Definice úlohy	0.014	332	0.015881	0.969787	
Výnočet	0.011	259	0.973125	0.015737	
	0.016	689	0.967459	0.015852	
Spuštění rutiny explot pro vykreslení diagramu	0.042	180	0.016641	0.941179	
Otevření diagramu, plot PS v GhostScriptu	0.022	283	0.961749	0.015969	
	0.056	093	0.017042	0.926865	
Extrakce dat o složení párů Pl - Afs	0.027	919	0.955994	0.912545	
	0.033	600	0.950192	0.016208	
	0.083	894	0.017889	0.898217	
	0.039	326	0.944344	0.016331	
složení nárů plagioklas – alkalický	0.097	781	0.018336	0.883883	
Sidzeni para plagiokias aikaneky	 999 990	0			
živec se nachází v souboru <i>plot</i> (bez	PUNKTE	E -1	0.1 0.000	000 0.00000	0 1.000000 9
	TEVT	nnc1	0		

přípony *.PS), který lze otevřít v

poznámkovém bloku

999 999 0 0.000000 0.000000 1.000000 0.20 0.5 0 -0.5 0 IEXI anci PUNKTE -1 0.1 0.000000 1.000000 0.000000 999 999 0 TEXT san 0.000000 1.000000 0.000000 0.20 0.5 0 -0.5 0 PUNKTE -1 0.1 1.000000 0.000000 0.000000 999 999 0 TEXT abh 1.000000 0.000000 0.000000 0.20 -0.5 -1 -0.5 0 ACHSEN 0 10 10 0 10 0 10 NPLOIG 0.00 10.00 0.0 10.0 10.0000 10.0000 0 0 5 0 0 0 0 0 16.00 4.000 0.2000000 0.0000 005.08.2016 - 15:01:08 CPU time: 0h 00m 17.88s 16.00 15.00 0.2000000 0.0000 0 16.00 14.65 0.2000000 0.0000 Otherter version: 03.01.2012 16.00 14.30 0.2000000 0.0000 0database: tcdb55c2p_modif 16.00 13.95 0.2000000 0.0000 0FSP: ideal+margules

Úloha 3: Pomocí programu SolvCalc spočítejte rovnovážnou teplotu pro složení Pl – Afs získaná v Úloze 1.

Použijte např. již vytvořenou křivku solvu:

mixing model: Fuhrman a Lindsley 1988; 850°C, 5 kbar

PLAGI	OKLAS		ALKALIC		
Ab	Or	An	Ab	Or	An
0.4076	0.0650	0.5274	0.1838	0.7750	0.0412
P = 5 kbar					

Úloha 3: Pomocí programu SolvCalc spočítejte rovnovážnou teplotu pro složení Pl – Afs získaná v Úloze 1.

Nezapomeňte na prvním místě vybrat mixing-model.

T00: (Mole Base) Margules Model: Fuhrman and Lindsley (1988) Average Temperature(C) = 850.22 Pressure(Kbar) = 5.0000SUM(|dT|) = 0.0000Or An Concordant Ab dX Temperatures(C): 850.22 850.22 850.22 **Original Plagioclase Composition:** 0.0650 0.5274 0.4076 0.0200 **Adjusted Plagioclase Composition:** 0.4076 0.0650 0.5274 0.0000 **Original Alkali Feldspar Composition:** 0.7750 0.1838 0.0412 0.0200 **Adjusted Alkali Feldspar Composition:** 0.1839 0.7749 0.0412 -0.0001

Úloha 3: Pomocí programu SolvCalc spočítejte rovnovážnou teplotu pro složení Pl – Afs získaná v Úloze 1.

PLAGI	OKLAS		ALKALIC		
Ab	Or	An	Ab	Or	An
0.4076	0.0650	0.5274	0.1838	0.7750	0.0412
P = 5 kbar					

Zkuste před výpočtem výchozí složení poněkud změnit v rozsahu ± 2 mol. % a výpočet opakujte.

Co se při výpočtu změní?