Eur. J. Mineral. PrePub DOI: 10.1127/ejm/2015/0027-2475

Chemical mass transfer in shear zones a comparison of four mass l

CYRIL DURAND^{1,*}, EMILIEN OLIOT^{2,3}, DIDIER M

 ¹ UMR 8217 Géosystèmes, University of Lille 1, Bâtiment *Corresponding author, e-mail: cyri
² Institut de Physique du Globe de Strasbourg; UMR 7516, Uni 67084 Strasbourg Cede
³ UMR 6249 Chrono-environnement, University of Franche-Com

J. metamorphic Geol., 2012, 30, 703-722

Role of chemical processes on shear : from the Grimsel metagranodiorite (/

P. GONCALVES,¹ E. OLIOT,^{1,2} D. MARQUER¹ AND J. A. [¹UMR-CNRS 6249 Chrono-Environnement, Université de Franche-Cor (philippe.goncalves@univ-fcomte.fr)

²UMR-CNRS 7516 Institut de Physique du Globe de Strasbourg, 1 rue ³Earth Science Department, Swiss Federal Institute of technology, CH-

PrePub Article

IARQUER3 and JEAN-PIERRE SIZUN3

SN5, 59655 Villeneuve d'Ascq Cedex, France Il.durand@univ-lille1.fr iversity of Strasbourg/EOST, CNRS, 1 rue Blessig, ex, France Ité, 16 route de Gray, 25030 Besançon Cedex, France

doi:10.1111/j.1525-1314.2012.00991.x

zone formation: an example Aar massif, Central Alps)

D. CONNOLLY³ mté, 16 route de Gray 25030 Besançon cedex, France

Blessig, 67084 Strasbourg Cedex, France 8092 Zürich, Switzerland

Alpine strain gradient

Durand et al. (2015), EJM			Table 2 (Grim	sel granodio	prite \rightarrow ultram	ylonite alteratio	nite alteration) Al2O3		
	c _i ⁰	σ_i^0	c _i ^A	σ_i^A	b _i			Δm _i	
SiO2	64.85	1.27	65.27	1.16	1.0065	1.0065		0.58	
TiO2	0.65	0.05	0.64	0.07	0.9846	0.9846		-0.01	
Al2O3	16.49	0.62	16.45	0.47	0.9976	0.9976		0.00	
Fe2O3	4.17	0.28	3.96	0.36	0.9496	0.9496		-0.20	
MnO	0.09	0.01	0.07	0.01	0.7778			-0.02	
MgO	1.13	0.09	2.56	0.13	2.2655			1.44	
CaO	2.98	0.27	0.84	0.35	0.2819			-2.14	
Na2O	5.12	0.43	4	0.6	0.7813			-1.11	
К2О	3.19	0.2	4.12	0.49	1.2915			0.94	
P2O5	0.15	0.03	0.16	0.02	1.0667	1.0667		0.01	
H2O	0.8	0.13	1.53	0.16	1.9125			0.73	
Total	99.62		99.57						
ppm									
Nb	24	5	25	6	1.0417	1.0417		1	
Zr	309	18	343	25	1.1100	1.1100		35	
Υ	43	8	43	4	1.0000	1.0000		0	
Sr	319	47	136	63	0.4263			-183	
Rb	139	29	185	53	1.3309			46	
V	47	4	52	4	1.1064	1.1064		5	
Ва	1139	114	1100	151	0.9658	0.9658		-36	
					AVERAGE	1.0229			
							Δm	0.24	

Chemical mass transfer in shear zones and metacarbonate xenoliths: a co

omparison of four mass balance approaches

Fe2	.03	Zr	10 comp	BO95	Al2O3	Fe2O3	Zr	10 comp
	Δm _i	Δm _i	Δm _i					
	3.88	-6.05	-1.04	-0.28	0.9%	6.0%	-9.3%	-1.6%
	0.02	-0.07	-0.02	-0.02	-1.3%	3.7%	-11.3%	-3.7%
	0.83	-1.67	-0.41	-0.22	0.0%	5.0%	-10.1%	-2.5%
	0.00	-0.60	-0.30	-0.25	-4.8%	0.0%	-14.4%	-7.2%
	-0.02	-0.03	-0.02	-0.02	-22.0%	-18.1%	-29.9%	-24.0%
	1.57	1.18	1.37	1.40	127.1%	138.6%	104.1%	121.5%
	-2.10	-2.22	-2.16	-2.15	-71.7%	-70.3%	-74.6%	-72.4%
	-0.91	-1.52	-1.21	-1.16	-21.7%	-17.7%	-29.6%	-23.6%
	1.15	0.52	0.84	0.89	29.5%	36.0%	16.4%	26.3%
	0.02	-0.01	0.01	0.01	6.9%	12.3%	-3.9%	4.3%
	0.81	0.58	0.70	0.71	91.7%	101.4%	72.3%	87.0%

		ppm					
2	-1	0	1	4.4%	9.7%	-6.2%	1.8%
52	0	26	30	11.3%	16.9%	0.0%	8.5%
2	-4	-1	0	0.2%	5.3%	-9.9%	-2.2%
-176	-196	-186	-184	-57.3%	-55.1%	-61.6%	-58.3%
56	28	42	44	33.4%	40.2%	19.9%	30.1%
8	0	4	4	10.9%	16.5%	-0.3%	8.2%
19	-148	-64	-51	-3.2%	1.7%	-13.0%	-5.6%

5.30 -9.91 **-2.24 -1.07**

	c _i ⁰	σ_i^0	c _i ^A	σ_i^A	b _i	К	L	М	rovnice	b 1.	.01	К	L	Μ	rovnice
SiO2	64.85	1.27	65.27	1.16	1.006476	0.000002	0.000000	8.877179	0.000000			109.393704	-0.258839	8.961614	12.1780367
TiO2	0.65	0.05	0.64	0.07	0.984615	0.000000	0.000000	0.000054	0.000000			0.000165	-0.000001	0.000056	2.94418014
AI2O3	16.49	0.62	16.45	0.47	0.997574	0.000000	0.000000	0.364137	0.000001			4.420922	-0.037081	0.376584	11.641076
Fe2O3	4.17	0.28	3.96	0.36	0.949640	0.000000	0.000000	0.040121	0.000000			0.446198	-0.010316	0.043977	9.91168624
MnO	0.09	0.01	0.07	0.01	0.777778	0.000000	0.000000	0.000000	0.000000			0.000001	0.000000	0.000000	
MgO	1.13	0.09	2.56	0.13	2.265487	0.000000	0.000000	0.003419	0.000000			-0.080669	-0.032916	0.000634	
CaO	2.98	0.27	0.84	0.35	0.281879	0.000000	0.000000	0.016459	-0.000001			2.550300	-0.695425	0.038804	
Na2O	5.12	0.43	4	0.6	0.781250	0.000000	0.000000	0.223591	0.000000			6.606915	-0.516435	0.301317	
K2O	3.19	0.2	4.12	0.49	1.291536	0.000000	0.000000	0.094140	0.000000			-1.605231	-0.064845	0.078944	
P2O5	0.15	0.03	0.16	0.02	1.066667	0.000000	0.000000	0.000002	0.000001			-0.00003	0.000000	0.000002	-1.97774986
LOI	0.8	0.13	1.53	0.16	1.912500	0.000000	0.000000	0.007641	0.000000			-0.049476	-0.017778	0.001838	
Total	99.62		99.57												
opm															
Nb	24	5	25	6	1.041667	0.002140	0.000000	3984.985006	0.000001			-2186.911052	-27.698285	3787.661638	-0.58469038
Zr	309	18	343	25	1.110032	0.480134	0.000000 1	1049034.146212	0.000000			-18112926.657702	-615585.515822	914031.598755	-20.4900052
Y	43	8	43	4	1.000000	-0.005844	0.000000	6399.999595	-0.000001			3257.034389	-28.013172	6624.754066	0.48741752
Sr	319	47	136	63	0.426332	-10.396674	0.000000 19	9101323.528700	-0.000001			740629969.312529	-155250761.916788	38763900.206613	
Rb	139	29	185	53	1.330935	4.911870	0.000000 18	8479147.672205	0.000000			-45376321.845382	-3366198.232596	13456421.456126	-3.62224981
V	47	4	52	4	1.106383	0.000490	0.000000	1266.315913	0.000000			-13657.144660	-652.513552	1046.402682	-13.675097
Ва	1139	114	1100	151	0.965759	-292.298532	-0.000006 #	##############	0.000000			4218405877.741190	-69211049.633529	1301750759.711000	3.18739574

Fitting of the isocon:

(Baumgartner and Olsen, 1995)

$$\frac{\partial \chi^2}{\partial b} = \frac{\partial}{\partial b} \left[\sum_{i=1}^n \frac{(c_i^A - bc_i^0)^2}{(\sigma_i^A)^2 + b^2 (\sigma_i^0)^2} \right] = 0.$$

0.000000

0.01	0.65	100	100.65
0.01	0.01	100	98.46
0.01	0.16	100	99.76
0.01	0.04	100	94.96
0.01	0.00	100	77.78
0.01	0.03	100	226.55
0.01	0.01	100	28.19
0.01	0.04	100	78.13
0.01	0.04	100	129.15
0.01	0.00	100	106.67
0.01	0.02	100	191.25
0.01	1.00	100	
0.01	0.00	100	
0.01	0.25	100	104.17
0.01	3.43	100	111.00
0.01	0.43	100	100.00
0.01	1.36	100	42.63
0.01	1.85	100	133.09
0.01	0.52	100	110.64
0.01	11.00	100	96.58
0.01	0.00		
0.01	########	100	101.08
0.01	########	100	104.8927
0.01	0.00	100	97.27157

Contents lists available

Litho

journal homepage: www.else

Coupled mass transfer through a fluid phase a during the hydration of granulite: An exampl Arcs, Norway

Stephen Centrella^{a,*}, Håkon Austrheim^b, Andrew Putnis^a

^a Institut für Mineralogie, University of Münster, D-48149 Münster, Germany

^b PGP, Department of Geosciences, University of Oslo, N-0316, Norway

^c The Institute for Geoscience Research (TIGeR), Curtin University, Perth 6102, Australia

5) 245-255

at ScienceDirect

S

evier.com/locate/lithos

and volume preservation e from the Bergen

I,C

Centrella et al. 2015, Lithos									
	Срх	Hbl+Qz	Grt	Prg+Chl+Ep	garnetite	amphibolite			
ρ	3.2	3.2	3.8	3	3.5	3.1			
SiO2	48.92	53.64	40.61	37.64	44.57	45.1			
TiO2	0.81	0.64	0.07	0.5	0.59	0.58			
Al2O3	7.23	7.98	22.59	19.44	13.94	13.57			
FeO	7.13	9.48	17.69	11.5	12.45	12.45			
MnO	0.01	0.18	0.4	0.04	0.18	0.18			
MgO	13.01	13.37	13.96	13.24	13.13	13.6			
CaO	19.44	12.72	5.44	9.59	12.72	11.6			
Na2O	1.49	0.38	0	1	0.97	1.23			
K2O	0	0.06	0	0.3	0	0.19			
H2O	0	1.55	0	7.25	0.16	2.43			

Coupled mass transfer through a fluid phase and volume preservation

during the hydration of granulite: An example from Bergen Arcs, Norv

vay

scaled	scaled