EXPONENCIÁLNÍ A LOGARITMICKÉ ROVNICE (Semináˇr z matematiky I - M1130/02 2016) (1) ˇRešte v R exponenciální rovnice: (a) 23x−1 ·4 = 8x+1 · 1 2 x [2] (b) 1 3x = 1√ 3 · 6 √ 273−3x · 1 9 x+3 [−2] (c) 22x ·5x −22x−1 ·5x+1 = −600 [2] (d) 2·0,5x2+8 3 x = 8 3 √ 4 −2;− 2 3 (e) 7·4−x+2 = 3·4−x+3 −5 [2] (f) 9x−0,5 +90,5−x = 10 3 [0;1] (g) 2x−1 −2x−2 = 5x−3 +2x−3 [3] (h) 4x +6x = 2·9x [0] (i) 2·4x +5x−1 2 = 5x+1 2 −22x−1 3 2 (j) 4+ √ 15 x + 4− √ 15 x = 8 [−2;2] (k) 23x +23x−1 +23x−2 +... = √ 12·23x −8 0; 1 3 (l) 2x +2x−1 +2x−2 +... = 2 √ 3·2x +4 [2] (2) ˇRešte v R logaritmické rovnice: (a) log(x−9)+2·log √ 2x−1 = 2 [13] (b) log √ 3x−5+log √ 7x−3 = 1+log √ 0,11 [2] (c) log7x log(2x−7) = 2 [7] (d) log x2 log √ x−log 1 x = 2 [10;0,01] (e) logloglogx = 0 1010 (f) log5 (2x+9)+log5 (4−3x) = 2+log5 (4+x) [−2] (g) (log4 x−2)·log4 x = 3 2 ·(log4 x−1) [2;64] (h) log2+log 4x−2 +9 = 1+log 2x−2 +1 [2;4] (i) log3 3x2−13x+28 + 2 9 = log5 0,2 [3;10] (j) √ xlog √ x = 10 1 100 ;100 (k) x 3 8 log3 x−3 4 logx = 1000 [0,01;100] (l) log3 x−2log1 3 x = 6 [9] (m) logx−1 3 = 2 1+ √ 3 (n) logx 9x2 ·log2 3 x = 4 1 9 ;3 (o) log8 x+log2 8 x+log3 8 x+... = 1 2 [2] (p) x logx+5 3 = 105+logx 10−5;103