# LABORATORIES

# 6. Lecture – Biofuels



**Bi7430 Molecular Biotechnology** 

- Alternatives to fossil fuels (crude oil, coal,...)
- Plant and animal biomass
- Primary biofuels like wood or crop waste used since ancient ages
- Most of the currently used biofuels are plant-based
- Algae and bacteria are promising sources of biofuels for the future

## Generations of biofuels



## Generations of biofuels

## **Generations of Biofuels**

## First Generation

- Derived from edible plants grown on arable land.
- Ethanol and butanol produced via yeast fermentation.
- Crops include wheat, sugar cane, and oily seeds.
- Attributed as a potential reason for recent spike in food prices.
- Net energy negative.

#### Second Generation

- Produced from nonedible crops grown on non-arable land.
- Sources have high lignocellulosic content, which include wood and organic waste.
- Potential to be net energy positive.

## Third Generation

- Produced from algae and other microorganisms.
- Resilient organisms that can be grown from sunlight, CO<sub>2</sub> and brackish water.
- Does not use arable land.
- Fastest growing of all biofuel sources.
- Potentially carbon neutral

#### Fourth Generation

- Genetic engineering of organisms for efficient production of biofuels.
- Includes altering lipid characteristics and introducing lipid excretion pathways.
- Aim to be carbon negative by creating artificial carbon sinks.

## Generations of biofuels





## Biofuels in the world

 Vast majority of the biofuels production is based in the US, Brazil and Europe



# Why are biofuels important?

- Renewable sources of energy
- Lowering of carbon emissions
- Lower energy demands than 'traditional' processes
- Biomass can be used for extraction of biologically active compounds and as biofuel
- Waste is biodegradable or can be used further

## Crude oil consumption



## Algae as biofuels sources



Advantages and disadvantages of biofuel production using microalgae.

| Advantages                                                                                                                         | Disadvantages                                     |
|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|
| High growth rate<br>Less water demand than land crops<br>High-efficiency CO <sub>2</sub> mitigation<br>More cost effective farming | Low biomass concentration<br>Higher capital costs |

## ALGAL BIOMASS PRODUCTION SYSTEMS





Fig. 1. Carbon dioxide fixation and main steps of algal biomass technologies.



Chemical compositions of algae on a dry matter basis (%).

\_

| Species of sample            | Proteins | Carbohydrates | Lipids    | Nucleic<br>acid |
|------------------------------|----------|---------------|-----------|-----------------|
| Scenedesmus obliquus         | 50-56    | 10–17         | 12–<br>14 | 3-6             |
| Scenedesmus quadricauda      | 47       | -             | 1.9       | -               |
| Scenedesmus dimorphus        | 8-18     | 21-52         | 16–<br>40 | -               |
| Chlamydomonas<br>rheinhardii | 48       | 17            | 21        | -               |
| Chlorella vulgaris           | 51-58    | 12–17         | 14–<br>22 | 4–5             |
| Chlorella pyrenoidosa        | 57       | 26            | 2         | -               |
| Spirogyra sp.                | 6-20     | 33-64         | 11-<br>21 | -               |
| Dunaliella bioculata         | 49       | 4             | 8         | _               |
| Dunaliella salina            | 57       | 32            | 6         | _               |
| Euglena gracilis             | 39-61    | 14-18         | 14–<br>20 | -               |
| Prymnesium parvum            | 28-45    | 25-33         | 22-<br>38 | 1–2             |
| Tetraselmis maculata         | 52       | 15            | 3         | -               |
| Porphyridium cruentum        | 28-39    | 40-57         | 9-14      | -               |
| Spirulina platensis          | 46-63    | 8-14          | 4-9       | 2-5             |
| Spirulina maxima             | 60-71    | 13-16         | 6-7       | 3-4.5           |
| Synechoccus sp.              | 63       | 15            | 11        | 5               |
| Anabaena cylindrica          | 43-56    | 25-30         | 4–7       | -               |

- Methylesters of unsaturated fatty acids
- Better biodegradability than fossil-based diesel
- High energy capacity
- Can corrode the engine parts
- Higher health hazard than fossil fuels

 In the EU 5 % of biodiesel has to be mixed with liquid fossil fuels



Data source: International Energy Agency, 2000-12.



#### US Biodiesel Production 2004-2008



#### Global biodiesel production by feedstock



#### **Global Biodiesel Production by Country**



2002 2003



Source: Diester Industrie International/EBB

Increase in EU rapeseed area in 2014



#### Figure 3. EU Per Capita Consumption of Vegetable Oil and Biodiesel



\*Biodiesel consumption is total industrial consumption, converted from '000Barrels a day using EIA's unit conversion of 158.99 liters per barrel.

\*\*2012-13 biodiesel consumption based on percent change from USDA estimates.

Sources: Vegetable Oil Consumption, USDA Foreign Agricultural Service, Production, Supply and Distribution database; per capita calculated using World Bank, World Development Indicators data on population. Biodiesel Consumption is from US Energy Information Administration, International Energy Statistics.



Fig. 1. Microalgae biodiesel value chain stages.



Fig. 3. Direct liquefaction of microalgae and oil from liquefaction products by  $CH_2Cl_2$  extraction.

Fig. 4. Primary oil from algal cells by liquefaction of hexane extraction.

Comparison of microalgae with other biodiesel feedstocks.

| Plant source                        | Seed oil content<br>(% oil by wt in biomass) | Oil yield<br>(L oil/ha year) | Land use<br>(m <sup>2</sup> year/kg biodiesel) | Biodiesel productivity<br>(kg biodiesel/ha year) |
|-------------------------------------|----------------------------------------------|------------------------------|------------------------------------------------|--------------------------------------------------|
| Corn/Maize (Zea mays L.)            | 44                                           | 172                          | 66                                             | 152                                              |
| Hemp (Cannabis sativa L.)           | 33                                           | 363                          | 31                                             | 321                                              |
| Soybean (Glycine max L.)            | 18                                           | 636                          | 18                                             | 562                                              |
| Jatropha (Jatropha curcas L.)       | 28                                           | 741                          | 15                                             | 656                                              |
| Camelina (Camelina sativa L.)       | 42                                           | 915                          | 12                                             | 809                                              |
| Canola/Rapeseed (Brassica napus L.) | 41                                           | 974                          | 12                                             | 862                                              |
| Sunflower (Helianthus annuus L.)    | 40                                           | 1070                         | 11                                             | 946                                              |
| Castor (Ricinus communis)           | 48                                           | 1307                         | 9                                              | 1156                                             |
| Palm oil (Elaeis guineensis)        | 36                                           | 5366                         | 2                                              | 4747                                             |
| Microalgae (low oil content)        | 30                                           | 58,700                       | 0.2                                            | 51,927                                           |
| Microalgae (medium oil content)     | 50                                           | 97,800                       | 0.1                                            | 86,515                                           |
| Microalgae (high oil content)       | 70                                           | 136,900                      | 0.1                                            | 121,104                                          |
|                                     |                                              |                              |                                                |                                                  |

## Yields of bio-oil by pyrolysis from alga samples at different temperatures (K).

| Sample                                        | 575 | 625 | 675          | 725 | 775 | 825          | 875          |
|-----------------------------------------------|-----|-----|--------------|-----|-----|--------------|--------------|
| Cladophora fracta<br>Chlorella protothecoides |     |     | 33.2<br>38.4 |     |     | 46.8<br>53.7 | 44.6<br>51.6 |

#### Table 1 | Comparative study between algal biomass and terrestrial plants for biodiesel production.

| Feedstock              | Conditions                                                                                                                                  | Biodiesel         | Reference                   |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------------------------|
| ALGAE                  |                                                                                                                                             |                   |                             |
| Spirulina platensis    | Reaction temperature 55°C, 60% catalyst concentration, 1:4 algae biomass to methanol ratio, 450 rpm stirring intensity                      | 60 g/kg lipid     | Nautiyal et al. (2014)      |
| Nannochloropsis sp.    | Oil extraction with n-hexane, acidic transesterification                                                                                    | 99 g/kg lipid     | Susilaningsih et al. (2009) |
| Scenedesmus sp.        | Alkaline (NaOH), temperature of 70°C                                                                                                        | 321.06 g/kg lipid | Kim et al. (2014)           |
|                        | Acidic (H <sub>2</sub> SO <sub>4</sub> ) catalyst, temperature of 70°C                                                                      | 282.23 g/kg lipid |                             |
| Nannochloropsis salina | Freeze drying of biomass, extraction with chloroform-methanol (1:1 ratio),<br>alkali transesterification                                    | 180.78 g/kg lipid | Muthukumar et al. (2012)    |
| Chlorella marina       |                                                                                                                                             | 100 g/kg lipid    |                             |
| TERRESTRIAL PLANTS     | 3                                                                                                                                           |                   |                             |
| Madhuca indica         | 0.30–0.35 (v/v) methanol-to-oil ratio, 1% (v/v) $\rm H_2SO_4$ as acid catalyst, 0.25 (v/v) methanol, 0.7% (w/v) KOH as alkaline catalyst    | 186.2 g/kg lipid  | Ghadge and Raheman (2005)   |
| Pongamia pinnata       | Transesterification with methanol, NaOH as catalyst, temp. 60°C                                                                             | 253 g/kg lipid    | Mamilla et al. (2011)       |
|                        | Acid-catalyzed esterification by using 0.5% H <sub>2</sub> SO <sub>4</sub> , alkali-catalyzed transesterification                           | 193.2 g/kg lipid  | Naik et al. (2008)          |
| Azadirachta indica     | Reaction time of 60 min, 0.7% H <sub>2</sub> SO <sub>4</sub> as acid catalyst, reaction temperature of 50°C, and methanol: oil ratio of 3:1 | 170 g/kg lipid    | Awolu and Layokun (2013)    |
| Soybean                | Hydrotalcite as basic catalyst, methanol/oil molar ratio of 20:1, reaction time of 10 h                                                     | 189.6 g/kg lipid  | Martin et al. (2013)        |

## **Bioethanol**



- Production depends on content of fermentable sugars
- Production higher than 4 % (40 g/L) is necessary to make the proces economically feasible

**Table 1.** Comparison of the productivities of lignocellulosic biomass and seaweeds

| Biomass                 | Productivity<br>[dry g/(m²·year)] | Reference |
|-------------------------|-----------------------------------|-----------|
| Lignocellulosic biomass |                                   |           |
| Switchgrass             | 560-2,240                         | 65        |
| Corn stover             | 180–790                           | 65        |
| Eucalyptus              | 1,000–2,000                       | 65        |
| Poplar                  | 300-612.5ª                        | 66        |
| Willow                  | 46-2,700                          | 67        |
| Seaweeds                |                                   |           |
| Green seaweeds          | 7,100 <sup>b</sup>                | 19, 20    |
| Brown seaweeds          | 3,300–11,300                      | 21        |
| Red seaweeds            | 3,300–11,300                      | 21        |

<sup>a</sup>Mean value calculated from the amount of biomass produced for 8 y; <sup>b</sup>calculated value.

## **Bioethanol production**

- Cells are pretreated using acid or enzymatic hydrolysis
- Hydrothermal pretreatment may be applied

- Ethanol fermentation by bacteria or yeast
  - Saccharomyces cerevisiae
  - or technical cultures
- Mannitol cannot be converted by S. cerevisiae

| Organism                 | Natural sugar utilization pathways <sup>a)</sup> |     |     | Major products <sup>b)</sup> |     | Tolerance <sup>c)</sup> |       | O <sub>2</sub> needed <sup>d)</sup> pH |       |             |   |         |
|--------------------------|--------------------------------------------------|-----|-----|------------------------------|-----|-------------------------|-------|----------------------------------------|-------|-------------|---|---------|
|                          | Glu                                              | Man | Gal | Xyl                          | Ara | EtOH                    | Other | Alcohols                               | Acids | Hydrolysate | • |         |
| Anaerobic bacteria       | +                                                | +   | +   | +                            | +   | +                       | +     | _                                      | _     | _           | _ | Neutral |
| Escherichia coli         | +                                                | +   | +   | +                            | +   | _                       | +     | -                                      | _     | _           | _ | Neutral |
| Zymomonas mobilis        | +                                                | _   | _   | _                            | _   | +                       | _     | +                                      | _     | _           | _ | Neutral |
| Saccharomyces cerevisiae | +                                                | +   | +   | _                            | _   | +                       | _     | ++                                     | ++    | ++          | _ | Acidic  |
| Pichia stipitis          | +                                                | +   | +   | +                            | +   | +                       | _     | _                                      | _     | _           | + | Acidic  |
| Filamentous fungi        | +                                                | +   | +   | +                            | +   | +                       | -     | ++                                     | ++    | ++          | - | Acidic  |

 Table 3. Advantages and disadvantages of various natural microorganisms regarding industrial ethanol production. Adapted from [98] with permission.

a) +: Fermentation possible; -: Fermentation not possible

b) +: Major product(s); -: Minor product(s)
c) ++: High tolerance; +: Moderate tolerance; -: Poor tolerance

d) +: O2 needed; -: O2 not needed

| Hydrolysis type                   | Hydrolysis source                                                                         | Fermentation<br>Mode <sup>a)</sup> | Algae species             | Algae<br>type | Yield<br>(g ethanol/g<br>algae) | Reference |
|-----------------------------------|-------------------------------------------------------------------------------------------|------------------------------------|---------------------------|---------------|---------------------------------|-----------|
| Acid                              | HCl/ MgCl <sub>2</sub>                                                                    | SHF                                | Chlorella sp.             | Micro         | 0.47                            | [36]      |
| Alkaline                          | NaOH                                                                                      | SHF                                | Chlorococcum infusionum   | Micro         | 0.261                           | [10]      |
| Chemical                          | H <sub>2</sub> SO <sub>4</sub>                                                            | SHF                                | Chlorococcum humicola     | Micro         | 0.48                            | [9]       |
| Chemical <sup>b)</sup>            | H <sub>2</sub> SO <sub>4</sub>                                                            | SHF                                | Chlorella vulgaris        | Micro         | 0.233                           | [61]      |
| Chemo-<br>enzymatic <sup>c)</sup> | HCl/ H <sub>2</sub> SO <sub>4</sub> + amyloglucosidase +<br>endocellulase + β-glucosidase | SHF                                | Dunaliella tertiolecta    | Micro         | 0.14                            | [46]      |
| Enzymatic                         | lpha-amylase + amyloglucosidase                                                           | SHF                                | Chlamydomonas reinhardtii | Micro         | 0.235                           | [18]      |
| Enzymatic                         | endoglucanase + β-glucanase +<br>amyloglucosidase                                         | SSF                                | Laminaria japonica        | Macro         | 0.196                           | [38]      |
| Enzymatic <sup>b)</sup>           | cellulase + amylase                                                                       | SHF                                | C. vulgaris               | Micro         | 0.178                           | [61]      |
| Enzymatic <sup>d)</sup>           | cellulase + $\beta$ -glucosidase                                                          | SHF                                | Gracilaria verrucosa      | Macro         | 0.43                            | [14]      |
| Enzymatic <sup>e)</sup>           | cellulase + $\beta$ -glucosidase                                                          | SSF                                | Saccharina japonica       | Macro         | 0.111                           | [31]      |
| Enzymatic <sup>b)</sup>           | cellulase + Amylase                                                                       | SSF                                | C. vulgaris               | Micro         | 0.214                           | [61]      |
| Physical <sup>c)</sup>            | supercritical CO <sub>2</sub>                                                             | SHF                                | Chlorococum sp.           | Micro         | 0.383                           | [45]      |

Table 2. Various hydrolysis treatments methods and their bioethanol yields

a) SHF: separate hydrolysis and fermentation; SSF: simultaneous saccharification and fermentation

b) Sonicated algal biomass was utilized

c) Lipid-extracted algal biomass was utilized

d) Agar pulp was extracted after alkali treatment and hydrolyzed

e) Algal biomass received extremely low acid pretreatment.

#### Table 6. Polysaccharides, sugars in them and organisms to convert these sugars into ethanol

| Biomass       | Polysaccharides   | Sugar                |                                      | Reference          |
|---------------|-------------------|----------------------|--------------------------------------|--------------------|
| Green seaweed | Glucan            | Glucose              | S. cerevisiae                        | 15, 27             |
|               | Ulvan             | Xylose               | Xylose-fermenting yeast              | 39                 |
|               |                   |                      | Xylose-utilizing S. cerevisiae,      | 37                 |
|               |                   |                      | Ethanologenic <i>E. coli</i>         | 38                 |
|               |                   | Glucuronic acid      | P. tannophilus                       | 35                 |
|               |                   |                      | Ethanologenic <i>E. coli.</i>        | 36                 |
| Brown seaweed | Glucan            | Glucose              | S. cerevisiae                        | 10, 15             |
|               |                   |                      | P. angophorae                        | 45                 |
|               |                   |                      | Ethanologenic <i>E. coli</i> KO11    | 44                 |
|               |                   |                      | Ethanologenic <i>E. coli</i> BAL1611 | 51                 |
|               | _a                | Mannitol             | P. angophorae                        | 45                 |
|               |                   |                      | Ethanologenic <i>E. coli</i> KO11    | 44                 |
|               |                   |                      | Ethanologenic E. coli BAL1611        | 51                 |
|               | Alginate          | Uronic acid          | Ethanologenic Sphingomonas sp. A1    | 50                 |
|               |                   |                      | Ethanologenic E. coli BAL BAL1611    | 51                 |
| Red seaweed   | Glucan            | Glucose              | S. cerevisiae                        | 15, 56, 58, 60, 61 |
|               | Agar, Carrageenan | Galactose            | S. cerevisiae                        | 15, 56, 58, 60, 61 |
|               |                   | 3,6-anhydrogalactose | NR <sup>b</sup>                      |                    |
|               |                   | 3,6-anhydrogalactose | NR <sup>b</sup>                      |                    |

<sup>a</sup>Mannitol is not a polysaccharides, but a major sugars in brown seaweeds; <sup>b</sup>ethanol production from 3,6-anhydrogalactose has not been reported.

| Fermentative product                                 | ion of et           | hanol from algal feedstock.                                                                                                                  |                                                                 | -                                                                   |                                                 |       |
|------------------------------------------------------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------|-------|
| Algal feedstock                                      | Type<br>of<br>algae | Pretreatment and saccharification                                                                                                            | Fermenting organism,<br>time and mode                           | Yield (reported)                                                    | Yield (normalised<br>to<br>g EtOH/g dry weight) | Refs. |
| Chlorococum sp.                                      | Micro               | Supercritical $\rm CO_2$ lipid extraction at 60 $^{\circ}\rm C$ and 400 mL/min $\rm CO_2$                                                    | Saccharomyces<br>bayanus SHF, 60 h                              | 3.83 g Ethanol from 10 g of<br>lipid-extracted microalgae<br>debris | 38.30%                                          | [49]  |
| Chlorococcum<br>infusionum                           | Micro               | 0.75% (w/v) NaOH at 120 $^\circ\!C$ for 30 min                                                                                               | Saccharomyces<br>cerevisiae SHF, 72 h                           | 0.26 g Ethanol/g algae                                              | 26.00%                                          | [52]  |
| Chlamydomonas<br>reinhardtii<br>UTEX 90              | Micro               | 3% $\rm H_2SO_4$ at 110 °C for 30 min                                                                                                        | Saccharomyces<br>cerevisiae S288C, SHF,<br>24 h                 | 0.291 g Ethanol/g algae                                             | 29.10%                                          | [39]  |
| Chlamydomonas<br>reinhardtii<br>UTEX 90              | Micro               | $\alpha\text{-amylase}$ (90 °C, 30 min) and glucoamylase (55 °C, 30 min)                                                                     | <i>Saccharomyces</i><br><i>cerevisiae</i> S288C, SSF,<br>40 h   | 0.235 g Ethanol/g algae                                             | 23.50%                                          | [16]  |
| Chlorella vulgaris                                   | Micro               | 3% $H_2SO_4$ at 110 $^\circ C$ for 105 min                                                                                                   | <i>Escherichia coli</i><br>SJL2526, SHF, 24 h                   | 0.4 g Ethanol/g algae                                               | 40.00%                                          | [40]  |
| Schizochytrium sp.                                   | Micro               | Hydrothermal fractionation and $\alpha$ -amylase at 13,000 AAU/g-glucan and glucoamylase 660 GAU/g-glucan                                    | <i>Escherichia</i> coli KO11,<br>SSF, 72 h                      | 11.8 g/L of Ethanol from<br>25.7 g/L of glucose                     | 5.51%                                           | [44]  |
| Kappaphycus<br>alvarezii                             | Macro               | 0.9 N H <sub>2</sub> SO <sub>4</sub> at 120 °C for 60 min                                                                                    | Saccharomyces<br>cerevisiae NCIM 3455,<br>SHF, 96 h             | 92.3% Theoretical conversion                                        | 15.4%                                           | [34]  |
| Kappaphycus<br>alvarezii                             | Macro               | 0.2% $H_2SO_4$ at 130 °C for 15 min                                                                                                          | Saccharomyces<br>cerevisiae SHF, 24h                            | 1.7 g/L                                                             | 1.31%                                           | [35]  |
| Gracilaria<br>salicornia                             | Macro               | 2% $H_2SO_4$ at 120 $^\circ C$ f or 30 min and cellulase at 40 $^\circ C$                                                                    | <i>Escherichia coli</i> KO11,<br>SHF, 48 h                      | 79.1 g Ethanol/1 kg                                                 | 7.90%                                           | [42]  |
| Gelidium elegans                                     | Macro               | Meicelase treatment 50 °C for 120 h pH 5.5                                                                                                   | <i>Saccharomyces</i><br><i>cerevisiae</i> IAM 4178,<br>SHF, 48h | 5.5% Ethanol in fermentation<br>broth                               | 36.7% * (dry weight<br>approximated)            | [41]  |
| Sargassum<br>sagamianum                              | Macro               | Thermal liquification at 200 °C and 15 MPa for<br>15 min.                                                                                    | Pichia stipitis CBS<br>7126, SHF, 48 h                          | 84.3% of Theoretical value                                          | 10.0%                                           | [43]  |
| Laminaria<br>japonica                                | Macro               | 0.1 N HCl, 121 °C for 15 min and Celluclast 1.5 L,<br>Viscozyme L, 50 °C on 150 rpm for saccharification                                     | <i>Escherichia coli</i> KO11,<br>SSF, 72 h                      | 0.4 g Ethanol/g of sugars                                           | 16.1%                                           | [36]  |
| Laminaria<br>hyperborea                              | Macro               | Cutting and washing in water pH 2 at 65 $^\circ\text{C}$                                                                                     | Pichia angophorae,<br>SHF, 48h                                  | 0.43 g Ethanol/g sugar                                              | 0.86%* (dry weight<br>approximated)             | [37]  |
| Saccharina<br>latissima<br>(Laminaria<br>hyperborea) | Macro               | Shredding and laminarinase treatment for saccharfication                                                                                     | Saccharomyces<br>cerevisiae Ethanol Red,<br>SSF, 48 h           | 0.45% (v/v)                                                         | 0.47%                                           | [38]  |
| Laminaria digitata                                   | Macro               | Shredding and laminarinase treatment for<br>saccharfication                                                                                  | Pichia angophorae, SSF,<br>96 h                                 | 167 mL Ethanol/kg algae                                             | 13.2%                                           | [51]  |
| Laminaria<br>japonica                                | Macro               | Floating residues from alginate industry treated with $0.1 \text{ M H}_2\text{SO}_4$ at $121 ^\circ\text{C}$ , 1 h and cellulase, cellobiase | Saccharomyces<br>cerevisiae, SHF, 36 h                          | 0.143 L Ethanol from 1 kg<br>floating residues                      | 11.3%                                           | [48]  |
| Laminaria<br>japonica                                | Macro               | Grinding of dry biomass and autoclaving at 120 °C for 15 min                                                                                 |                                                                 | 2.9 g/L Ethanol using 100 g/L<br>algae                              | 2.9%                                            | [53]  |

Micro, microalgae; Macro, macroalgae; SHF, separate hydrolysis and fermentation; SSF, simultaneous saccharification and fermentation. Several studies were optimisation experiments containing various combinations of feedstocks/fermentors/pretreatments in these cases the most successful experiment is reported in the table.

| Fermentation<br>Type                                    | Algal feedstock           | Ну                                                                           | drolysis                           | Fermentation                |                                 | Bioethanol<br>Yield                    | Reference          |
|---------------------------------------------------------|---------------------------|------------------------------------------------------------------------------|------------------------------------|-----------------------------|---------------------------------|----------------------------------------|--------------------|
|                                                         |                           | Source                                                                       | Treatment conditions               | Source                      | Process<br>conditions           | _                                      |                    |
| Simultaneous Saccharification<br>and Fermentation (SSF) | Chlamydomonas<br>fasciata | Glutase                                                                      | 40°C for 30 min                    | Saccharomyces<br>cerevisiae | 100 rpm and<br>40°C for 30 h    | 0.194 g ethanol/g<br>algae             | [99]               |
|                                                         | Chlorella vulgaris        | Cellulase +<br>Amylase                                                       | 200 rpm and<br>45°C                | Zymomonas<br>mobilis        | 30°C in desktop<br>fermentation | 0.214 g ethanol/g<br>algae             | [61]               |
|                                                         | Schizocytrium sp.         | Amylase                                                                      | 37°C at 150 rpm<br>for 24 h        | Escherichia coli            | 150 rpm and 37°C                | 0.055 g ethanol/g<br>algae             | [44]               |
| ultaneoi<br>nd Fern                                     | Laminaria<br>japonica     | Sulfuric acid                                                                | 121°C<br>for 15 min                | E. coli                     | 150 rpm and 37°C                | 0.4 g ethanol/g<br>carbohydrate        | [39]               |
| Simu<br>a                                               | Saccharina<br>japonica    | Bacillus<br>licheniformis                                                    | 200 rpm and<br>30°C for 7.5 days   | Pichia<br>angophorae        | 200 rpm and<br>30°C for 13 h    | 7.7 g ethanol/<br>L algae hydrolysate  | [55]               |
|                                                         | C. vulgaris               | Cellulase +<br>Amylase                                                       | 200 rpm and 45°C                   | Z. mobilis                  | 30°C in desktop<br>fermentation | 0.178 g ethanol/g<br>algae             | [61]               |
| entation                                                | C. vulgaris               | Sulfuric acid                                                                | 121°C for 20 min.                  | Z. mobilis                  | 30°C in desktop<br>fermentation | 0.233 g ethanol/g<br>algae             | <mark>[</mark> 61] |
| Separate Hydrolysis and Fermentation<br>(SHF)           | Dunaliella<br>tertiolecta | HCl/H <sub>2</sub> SO <sub>4</sub><br>+ cellulase<br>+ amylo-<br>glucosidase | 121°C for 15 min                   | S. cerevisiae               | 200 rpm and<br>30°C for 12 h    | 0.14 g ethanol/g<br>algae              | [46]               |
| Hydroly                                                 | Gelidium<br>amansii       | Sulfuric acid                                                                | 150°C and 3.0–<br>3.5 bar pressure | Brettanomyces<br>custersii  | 150 rpm and 30°C                | 27.6 g ethanol/<br>L algae hydrolysate | [53]               |
| eparate                                                 | Scenedesmus<br>abundans   | Cellulase                                                                    | 37°C for 30 min                    | S. cerevisiae               | 200 rpm and<br>30°C for 48 h    | 0.103 g ethanol/<br>g algae            | [60]               |
| Ň                                                       | L. japonica               | Cellulase +<br>Cellubiose                                                    | 150 rpm and<br>50°C for 48 h       | S. cerevisiae               | 30°C for 36 h                   | 0.143 L ethanol/<br>kg algae           | [47]               |

2

 Table 4. Bioethanol production from SSF and SHF tested on various algal strains

## Hydrogen production



Hydrogen production from natural gas

•  $CH_4 + H_2O \rightleftharpoons CO + 3 H_2$  (at 700 – 1100 °C) – steam reforming



## Hydrogen from coal



|                            | CASE 1    | CASE 2     | CASE 3 5   |
|----------------------------|-----------|------------|------------|
| Technology Readiness Goal  | Current   | 2015       | 2015       |
| Carbon Sequestration       | YES (87%) | Yes (100%) | Yes (100%) |
| Hydrogen (MMscfd)          | 119       | 158        | 153        |
| Coal (Tons/day) (AR)       | 3000      | 3000       | 6000       |
| Efficiency (%HHV)          | 59        | 75.5       | 59         |
| Excess Power (MW)          | 26.9      | 25         | 417        |
| Power Value (mils/kWh)     | 53.6      | 53.6       | 53.6       |
| Capital (Smillion)         | 417       | 425        | 950        |
| RSP of Hydrogen (\$/MMBtu) | 8.18      | 5.89       | 3.98       |





# **Biohydrogen production**



# **Biohydrogen production**







#### Nitrogenase in cyanobacteria



**Fig. 2.** Nitrogenase(Nase)-mediated hydrogen evolution in a heterocyst of nitrogen-fixing heterocystous cyanobacteria [10, 30, 32]. The oxygen and hydrogen evolution are carried out separately and the energy-rich carbohydrate (CH<sub>2</sub>O) is used as the electron source in the oxygen-free heterocyst.

....3

$$N_2 + 8H^+ + 8e + 16ATP \rightarrow 2NH_3 + H_2 + 16ADP + 16Pi$$
 ...2

 $8H^+ + 8e + 16ATP \rightarrow 4H_2 + 16ADP + 16Pi$ 





| Table       | 1.      | Hydrogen | evolution | via | direct | biophotolysis | by | cyanobacteria | in | laboratory |
|-------------|---------|----------|-----------|-----|--------|---------------|----|---------------|----|------------|
| photobiorea | actors. |          |           |     |        |               |    |               |    |            |

| Organism      | Maximum           | Maximum                  | Gas for                | Gas for H                             | Ref  |
|---------------|-------------------|--------------------------|------------------------|---------------------------------------|------|
| -             | evolution         | productivity             | growth;                | evolution;                            |      |
|               | rate              | (mmol/L/hr) <sup>b</sup> | Light intensity        | Light intensity                       |      |
|               | (mmol/g           | (kJ/L/hr) <sup>b</sup>   | $(w/m^2)^c$            | $(w/m^2)^c$                           |      |
|               | /hr) <sup>a</sup> |                          |                        |                                       |      |
| Anabaena      | 1.33              | 0.93                     | 99.7% air              | 97% Ar                                | [38] |
| cylindrica    |                   | (0.22)                   | 0.3% CO <sub>2</sub> ; | 3% CO <sub>2</sub> ;                  |      |
|               |                   |                          | 20                     | 60                                    |      |
| Anabaena      | 0.7               | 0.085                    | 25% N <sub>2</sub>     | 5% N <sub>2</sub>                     | [39] |
| variabilis    |                   | (0.02)                   | 2% CO <sub>2</sub>     | 2% CO <sub>2</sub>                    |      |
|               |                   |                          | 73% Ar;                | 93% Ar;                               |      |
|               |                   |                          | 20                     | 20                                    |      |
| Anabaena      | 3.06              | 0.35                     | 25% N <sub>2</sub>     | 5% N <sub>2</sub>                     | [39] |
| variabilis    |                   | (0.08)                   | 2% CO <sub>2</sub>     | 2% CO <sub>2</sub>                    |      |
| PK84          |                   |                          | 73% Ar;                | 93% Ar;                               |      |
|               |                   |                          | 20                     | 20                                    |      |
| Anabaena      | 0.21              | 0.26                     | 98% air                | 98% air                               | [40] |
| variabilis    |                   | (0.06)                   | 2% CO <sub>2</sub> ;   | 2% CO <sub>2</sub> ;                  |      |
| PK84          |                   |                          | 72 (L/D) <sup>d</sup>  | 72 (L/D) <sup>d</sup>                 |      |
| Anabaena      | (12) <sup>a</sup> | 0.084                    | 98% air                | 98% air                               | [28] |
| AMC414        |                   | (0.02)                   | 2% CO <sub>2</sub> ;   | 2% CO <sub>2</sub> ;                  |      |
|               |                   |                          | 48                     | 99                                    |      |
| Gloebacter    | $(1.38)^{a}$      | -                        | Air;                   | Ar/CO/C <sub>2</sub> H <sub>2</sub> ; | [29] |
| PCC7421       |                   |                          | 4                      | 4-6                                   |      |
| Synechococcus | $(0.66)^{a}$      | -                        | Air;                   | Ar/CO/C <sub>2</sub> H <sub>2</sub> ; | [29] |
| PCC602        |                   |                          | 4                      | 4-6 or dark                           |      |
| Aphanocapsa   | $(0.4)^{a}$       | -                        | Air;                   | Ar;                                   | [29] |
| montana       |                   |                          | 4                      | 4-6                                   |      |

Note:

a. The specific hydrogen evolution rate based on per gram of dry cell mass or chlorophyll a (in blanket).

b. Hydrogen productivity per liquid volume of photobioreactor during hydrogen evolution stage, not including the time and space required for cell growth and enzyme induction. The value in blankets is the energy productivity (kJ/L/hr) based on the heat of combusion of hydrogen (0.24 kJ/mmol) at 25 °C.

- c.  $1 \text{ W/m}^2 = 4.6 \text{ }\mu\text{molE/m}^2\text{/s}$  (APR). APR: photosynthetically active radiation that includes light energy of 400-700 nm in wavelength.
- d. 12 hour light and 12 hour dark.

Table 2. Direct biophotolysis hydrogen production by green microalgae in laboratory photobioreactors.

| Organism                                | Maximum<br>hydrogen<br>evolution<br>(mmol/g<br>Chl/hr) <sup>a</sup> | Maximum<br>hydrogen<br>productivity<br>(mmol/L/hr) <sup>b</sup><br>(kJ/L/hr) <sup>b</sup> | Gas for growth;<br>Carbon source;<br>Light intensity<br>(w/m <sup>2</sup> ) <sup>c</sup> | H <sub>2</sub> evolution<br>medium;<br>Light intensity<br>(w/m <sup>2</sup> ) <sup>c</sup> | Ref  |
|-----------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------|
| Chlamydomona<br>s reinhardtii<br>cc124  | 5.94                                                                | 0.094<br>(0.022)                                                                          | 97% air<br>3% CO <sub>2</sub> ;<br>Acetate (17mM);<br>43                                 | Argon;<br>S-free acetate<br>(17mM);<br>65                                                  | [54] |
| Platymonas<br>subcordiformis            | (0.001) <sup>a</sup>                                                | 0.002<br>(0.0005)                                                                         | Air;<br>Seawater<br>nutrients;<br>22(L/D) <sup>d</sup>                                   | N <sub>2</sub> ;<br>S-free seawater;<br>35                                                 | [46] |
| Chlamydomona<br>s reinhardtii<br>cc1036 | 5.91                                                                | 0.48<br>(0.12)                                                                            | Air;<br>Acetate (17mM);<br>22                                                            | Argon;<br>S-free acetate<br>(17mM);<br>26                                                  | [55] |

Note:

a. The specific hydrogen evolution based on per gram of chlorophyll or 10<sup>9</sup> cells (in blanket).

- b. See Table 1.
- c. See Table 1.
- d. 14-hour light and 10-hour dark.

| Table 3.   | Fermentative | hydrogen | evolution | by | cyanobacteria | and | microalgae | in | dark | and | anaerobic | 2 |
|------------|--------------|----------|-----------|----|---------------|-----|------------|----|------|-----|-----------|---|
| fermenters | -            |          |           |    |               |     |            |    |      |     |           |   |

| Organism                     | Maximum<br>hydrogen<br>evolution<br>(mmol/g<br>dry wt /hr) <sup>a</sup> | Maximum<br>hydrogen<br>productivity<br>(mmol/L/hr) <sup>b</sup><br>(kJ/L/hr) <sup>b</sup> | Gas for growth/<br>Carbon/<br>nutrient;<br>Light intensity<br>(w/m <sup>2</sup> ) <sup>c</sup> | H evolution gas;<br>Induction time;<br>Carbohydrate storage<br>(g/L) | Ref  |
|------------------------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|------|
| Chlamydomonas<br>reinhardtii | (0.96) <sup>a</sup>                                                     | 0.13<br>(0.032)                                                                           | Air/Acetate;<br>0.6                                                                            | N₂;<br>∼5hr dark;<br>Starch 0.77                                     | [60] |
| Chlamydomonas<br>MGA 161     | 0.1                                                                     | 0.2<br>(0.048)                                                                            | 95% air/<br>5% CO <sub>2</sub> ;<br>25                                                         | <i>N</i> <sub>2</sub> ;<br>12 hr dark;<br>Starch 0.22                | [64] |
| Spirulina<br>platensis       | 0.11                                                                    | 0.18<br>(0.043)                                                                           | Air/<br>N-limited;<br>8                                                                        | <i>N</i> <sub>2</sub> ;<br>12-24 hr dark;<br>Glycogen 0.81           | [66] |
| Gloeocapsa<br>alpicola       | 1.02                                                                    | 1.6<br>(0.38)                                                                             | 98% air/<br>2% CO <sub>2</sub> /<br>N-limited;<br>36                                           | Argon;<br>24 hr dark<br>Glycogen 1.4                                 | [67] |
| Gloeocapsa<br>alpicola       | (~4.5) <sup>a</sup>                                                     | 0.0072<br>(0.002)                                                                         | 96% air/<br>4% CO <sub>2</sub> /<br>S-deprived;<br>5                                           | Argon;<br>12 hr dark<br>Glycogen 0.024                               | [58] |
| Synechocystis<br>PCC6803     | (~3) <sup>a</sup>                                                       | 0.0048<br>(0.001)                                                                         | 96% Air/<br>4% CO <sub>2</sub> /<br>S-deprived;<br>5                                           | Argon;<br>12 hr dark<br>Glycogen 0.02                                | [58] |

 Table 2. A list of the processes integrated with the production of H2 from dark fermentation (DF, dark fermentation; PF, photofermentation;

 MEC, microbial electrolysis cell; BEH, bio-electrohydrolysis).

|                                 | F              | First Stage                                 | Seco                  |                                            |             |
|---------------------------------|----------------|---------------------------------------------|-----------------------|--------------------------------------------|-------------|
| Substrate                       | Process Type   | Yield                                       | Process Type          | Yield                                      | - Reference |
| Cornstalks                      | Hydrogen (DF)  | 58.0 mL/g                                   | Methane (DF)          | 200.9 mL/g                                 | [93]        |
| Rice straw                      | Hydrogen (DF)  | 20 mL/g                                     | Methane (DF)          | 260 mL/g                                   | [94]        |
| Water hyacinth                  | Hydrogen (DF)  | 38.2 mmol H <sub>2</sub> /L/day             | Methane (DF)          | 29 mmol CH <sub>4</sub> /L/d               | [95]        |
| Water hyacinth                  | Hydrogen (DF)  | 51.7 mL of $H_2/g$ of TVS                   | Methane (DF)          | 43.4 mL of CH₄/g of TVS                    | [96]        |
| Laminaria japonica              | Hydrogen (DF)  | 115.2 mL of H <sub>2</sub> /g               | Methane (DF)          | 329.8 mL of CH <sub>4</sub> /g             | [97]        |
| Cassava wastewater              | Hydrogen (DF)  | 54.22 mL of H <sub>2</sub> /g               | Methane (DF)          | 164.87 mL of CH <sub>4</sub> /g            | [98]        |
| Microalgal biomass              | Hydrogen (DF)  | $135 \pm 3.11 \text{ mL of } H_2/g/VS$      | Methane (DF)          | $414 \pm 2.45$ mL of CH <sub>4</sub> /g/VS | [99]        |
| Glucose                         | Hydrogen (DF)  | 1.20 mmol                                   | Hydrogen (PF)         | 5.22 mmol                                  | [100]       |
| Cheese whey wastewater          | Hydrogen (DF)  | 2.04 mol                                    | Hydrogen (PF)         | 2.69 mol                                   | [101]       |
| Vegetable waste                 | Hydrogen (DF)  | 12.61 mmol H <sub>2</sub> /day              | Electricity (DF)      | $111.76 \text{ mW/m}^2$                    | [87]        |
| Fruit juice industry wastewater | Hydrogen (DF)  | 1.4 mol H <sub>2</sub> /mol hexose          | Electricity (DF)      | 0.55 W/m <sup>2</sup>                      | [102]       |
| Corn stover lignocellulose      | Hydrogen (DF)  | 1.67 mol H <sub>2</sub> /mol glucose        | Hydrogen (MEC)        | 1.00 L/L-d                                 | [103]       |
| Cellobiose                      | Hydrogen (DF)  | 1.64 mol H <sub>2</sub> /mol glucose        | Hydrogen (MEC)        | 0.96 L/L-d                                 | [104]       |
| Distillery spent wash           | Hydrogen (DF)  | 39.8 L                                      | Bioplastic            | 40% dry cell weight                        | [105]       |
| Food waste                      | Hydrogen (DF)  | 3.18 L                                      | Bioplastic            | 36% dry cell weight                        | [106]       |
| Pea shells                      | Hydrogen (DF)  | $5.2 \text{ L}$ of $H_2$ from $4 \text{ L}$ | Bioplastic            | 1685 mg of PHB/L                           | [107]       |
| Food waste                      | Hydrogen (DF)  | 69.94 mmol                                  | Lipid                 | 26.4% dry cell weight                      | [108]       |
| Olive oil mill wastewater       | Hydrogen (DF)  | 196.2 mL/g                                  | Biopolymer            | 8.9% dry cell weight                       | [109]       |
| Molasses wastewater             | Hydrogen (DF)  | 130.57 mmol                                 | Ethanol               | 379.3 mg/L                                 | [110]       |
| Food waste                      | Bioelectricity | 85.2 mW/m <sup>2</sup>                      | Hydrogen (DF)         | 0.91 L                                     | [39]        |
| Starch hydrolysate              | Hydrogen (DF)  | 5.40 mmol H <sub>2</sub> /g of COD          | Hydrogen (PF)         | 10.72 mmol H <sub>2</sub> /g of COD        | [111]       |
| Sucrose                         | Hydrogen (DF)  | $0.98 \pm 0.32 \text{ mol } H_2/\text{mol}$ | Hydrogen (PF)         | $4.48 \pm 0.23 \text{ mol } H_2/mol$       | [112]       |
| Glucose:xylose (9:1);           | Undream (DE)   | 250 mL/L/h;                                 | Mixotropic microalgae | 205 mL/L/h;                                | [112]       |
| Microalgae biomass              | Hydrogen (DF)  | 2.78 mol H <sub>2</sub> /mol                | cultivation           | 1.12 g of biomass/g of COD                 | [113]       |

Biogas





■ Proteins 
■ Carbohydrates 
■ Lipids

Methane production and pretreatment improvement for microalgal biomass.

| Feedstock                                                           | AD<br>Process | Co-digestion     | Т<br>(°С) | Pretreatment                                           | Methane                                   | Improvement | Ref.  |
|---------------------------------------------------------------------|---------------|------------------|-----------|--------------------------------------------------------|-------------------------------------------|-------------|-------|
| Pilayella, Ectocarpus, traces<br>Enteromarpha                       | Continuous    | -                | 35        | Hydrothermal depolymerization + enzymatic hydrolysis   | 0.054 dm <sup>3</sup> /g<br>substrate     | +64% biogas | [114] |
| Chlorella vulgaris                                                  | Batch         | Sewage<br>sludge | 35        | Ultrasonic                                             | N.A.                                      | +90% biogas | [115] |
| Scenedesmus                                                         | Batch         | _                | 35        | Ultrasonic                                             | 153.5 mL g <sup>-1</sup> COD              | +100%       | [116] |
|                                                                     | Batch         | -                | 35        | Thermal at 80 °C                                       | 128.7 mL g <sup>-1</sup> COD              | +60%        | [116] |
| Scenedesmus                                                         | Batch         | -                | 38        | High pressure thermal hydrolysis + lipid<br>extraction | $380 \text{ mL g}^{-1} \text{ VS}$        | +110%       | [118] |
|                                                                     | Batch         | -                | 38        | High pressure thermal hydrolysis                       | 320 mL g <sup>-1</sup> VS                 | +81%        | [118] |
|                                                                     | Batch         | -                | 38        | Lipid extraction                                       | $240 \text{ mL g}^{-1} \text{ VS}$        | +33%        | [118] |
| Nannochloropis salina                                               | Batch         | _                | 38        | Thermal                                                | 549 mL $g^{-1}$ VS                        | +58%        | [119] |
| -                                                                   | Batch         | _                | 38        | Microwave                                              | $487 \text{ mL g}^{-1} \text{ VS}$        | +40%        | [119] |
|                                                                     | Batch         | -                | 38        | French press                                           | $460 \text{ mL g}^{-1} \text{ VS}$        | +33%        | [119] |
|                                                                     | Batch         | _                | 38        | Frozen                                                 | $233 \text{ mLg}^{-1} \text{ VS}$         | -33%        | [119] |
|                                                                     | Batch         | _                | 38        | Ultrasonic                                             | 247 mL $g^{-1}$ VS                        | -29%        | [119] |
| Chlamydomonas, Scenedesmus,<br>Nannocloropsis                       | Batch         | -                | 35        | Thermal                                                | 398 mL g <sup>-1</sup> VS                 | +46%        | [97]  |
| -                                                                   |               |                  |           | Ultrasound                                             | 310 mL g <sup>-1</sup> VS                 | +14%        | [97]  |
|                                                                     |               |                  |           | Biological                                             |                                           | Negligible  | [97]  |
| Acutodesmus obliquus, Oocystis sp.,<br>Phormidium and Nitzschia sp. | Batch         | -                | 35        | Thermal                                                | $307 \text{ mL g}^{-1} \text{ VS}$        | +55%        | [97]  |
|                                                                     |               |                  |           | Ultrasound                                             | 223 mL g <sup>-1</sup> VS                 | +13%        | [97]  |
|                                                                     |               |                  |           | Biological                                             | N.A.                                      | Negligible  | [97]  |
| Microspora                                                          | Batch         | _                | 35        | Thermal 110 °C                                         | 413 mL g <sup>-1</sup> VS                 | +62%        | [97]  |
|                                                                     |               |                  |           | Ultrasound                                             | $314 \text{ mL g}^{-1} \text{ VS}$        | +24%        | [97]  |
|                                                                     |               |                  |           | Biological                                             | N.A.                                      | Negligible  | [97]  |
| Scenedesmus                                                         | Batch         | _                | 35        | Thermal 90 °C                                          | 170 mL g <sup>-1</sup> COD                | +124%       | [120] |
| Rhizoclonium                                                        | Batch         | _                | 53        | Blending+Enzymatic                                     | 145 mL CH <sub>4</sub> g <sup>-1</sup> TS | +20%        | [121] |
| Chlamydomonas reinhardtii                                           | Batch         | _                | 38        | Drying                                                 | N.A.                                      | -20%        | [101] |
| Chlorella Kessleri                                                  | Batch         | -                | 38        | Drying                                                 | N.A.                                      | -23%        | [101] |

| Feedstock                                          | AD Process     | Co-digestion  | T (°C) | Pretreatment                                | Methane                            | Improvement |
|----------------------------------------------------|----------------|---------------|--------|---------------------------------------------|------------------------------------|-------------|
| Saccharina latissima                               | Batch          | -             | 37     | Steam explosion at 130 °C, 10 min           | $268 \mathrm{mLg^{-1}VS}$          | +20%        |
| Laminaria digitata+L. hyperborea+<br>L. Saccharina | Batch          | -             | 50     | Beating                                     | 425 mLg <sup>-1</sup> TS           | + 53%       |
| Ulva lactuca                                       | Batch          | -             | 55     | Unwashed, macerated                         | 271 mL g <sup>-1</sup> VS          | + 56%       |
|                                                    | Batch          | -             | 55     | Washed, macerated                           | 200 mL g <sup>-1</sup> VS          | + 17%       |
|                                                    | Batch          | -             | 55     | Washed, 130 °C/20 min                       | $187  \text{mLg}^{-1}  \text{VS}$  | + 7%        |
|                                                    | Batch          | -             | 55     | Washed, 110 °C/20 min                       | $157 \text{ mL g}^{-1} \text{ VS}$ | - 10%       |
|                                                    | Batch          | -             | 37     | Unwashed, roughly chopped                   | $162 \text{ mL g}^{-1} \text{ VS}$ | - 7%        |
|                                                    | Batch          | -             | 55     | Dried, ground                               | $176  \text{mLg}^{-1}  \text{VS}$  | +1%         |
| Gracilaria vermiculophylla                         | Batch          | -             | 53     | Washed, Macerated                           | $147 \text{ mL g}^{-1} \text{ VS}$ | + 11%       |
| Ulva lactuca                                       | Batch          | -             | 53     | Washed, Macerated                           | $255 \mathrm{mLg^{-1}VS}$          | +68%        |
| Chaetomorpha linum                                 | Batch          | -             | 53     | Washed, Macerated                           | $195 \mathrm{mLg^{-1}VS}$          | + 17%       |
| Saccharina latissima                               | Batch          | -             | 53     | Washed, Macerated                           | 333 mL g <sup>-1</sup> VS          | -2%         |
| Ulva lactuca                                       | Lab-scale CSTR | Cattle manure | 53     | Dried, ground                               | 15-16 ml g feed-1                  | N.A.        |
| Ulva sp.                                           | Batch          | Sewage sludge | 35     | Washed                                      | 126 mL g <sup>-1</sup> VS          | 0%          |
| -                                                  | Batch          | Sewage sludge | 35     | Ground                                      | $126 \text{ mL g}^{-1} \text{ VS}$ | 0%          |
|                                                    | Batch          | Sewage sludge | 35     | Washed, ground                              | $180  \text{mLg}^{-1}  \text{VS}$  | + 30%       |
| Ulva sp.                                           | Batch          | -             | 35     | Unwashed                                    | 110 mL g <sup>-1</sup> VS          | N.A.        |
| -                                                  | Batch          | _             | 35     | Washed                                      | $94 \text{ mL g}^{-1} \text{VS}$   | - 14%       |
|                                                    | Batch          | _             | 35     | Dried                                       | $145  \text{mLg}^{-1}  \text{VS}$  | +32%        |
|                                                    | Batch          | -             | 35     | Dried, ground                               | $177 \text{ mL g}^{-1} \text{ VS}$ | +60%        |
|                                                    | CSTR           | Bovine manure | 35     | Ground                                      | $203 \text{ mLg}^{-1} \text{ VS}$  | N.A.        |
| Palmaria palmata                                   | Batch          | Sludge        | 35     | NaOH, thermal pretreatment at 20 °C/ 30 min | 365 mLg <sup>-1</sup> VS           | + 19%       |

Methane production and pretreatment improvement for macroalgal biomass.

### Current approaches in biofuels production

- Single gene targeted approaches
  - Insertion of specific enzyme
  - Engineering of RUBISCO and/or PS II
  - Enzyme engineering

- Systemic approaches, metabolic engineering
  - Multiple insertions/deletions
  - Novel metabolic pathways
  - Tampering the central carbon metabolism



Figure 2. Schematic representation of engineered biochemical pathways in cyanobacteria. Core metabolism of photosynthetic processes is shown in black text. Branch points utilized for the production of various compounds discussed in this review are indicated (highlighted pathways) with relevant enzymes catalyzing specific reactions indicated in italics. Abbreviations: 3-PGA, 3-phosphoglycerate; AAD, aldehyde decarbonylase; ADH, alcohol dehydrogenase II; ALA, 2-acetolactate; AlsS, acetolactate synthase; DHIV, 2,3-dihydroxy-isovalerate; F6P, fructose 6-phosphate; FNR, ferredoxin NADP+ reductase; G6P, glucose 6-phosphate; HydA, [FeFe] hydrogenase; HydEF/G, hydrogenase maturation factors; IdhA, lactate dehydrogenase; IIvD, dihydroxy-acid dehydratase; IIvC, acetohydroxy acid isomeroreductase; PDC, pyruvate decarboxylase; PEP, phosphoenolpyruvate.

#### Single gene targeted approaches

#### In vitro route (intracellular lipase)

| E. coli                           | Proteus sp. lipase                                             | Vegetable oils, methanol    | 78-100% | Gao et al. (2009)       |
|-----------------------------------|----------------------------------------------------------------|-----------------------------|---------|-------------------------|
| E. coli                           | S. marcescens lipase                                           | Waste grease, methanol      | 97%     | Li et al. (2012)        |
| E. coli                           | T. lanuginosus lipase,                                         | Waste grease, methanol      | 87-95%  | Yan et al. (2012b)      |
|                                   | C. antarctica lipase B                                         |                             |         |                         |
| S. cerevisiae                     | R. oryzae lipase                                               | Soybean oil, methanol       | 71%     | Matsumoto et al. (2001) |
| P. pastoris                       | T. lanuginosus lipase                                          | Waste cooking oil, methanol | 82%     | Yan et al. (2014b)      |
| A. oryzae                         | F. heterosporum lipase                                         | Rapeseed oil, ethanol       | 94%     | Howard et al. (2010)    |
| A. oryzae                         | F. heterosporum lipase,                                        | Soybean oil, methanol       | 98%     | Adachi et al. (2011)    |
|                                   | A. oryzae lipase (mdlB)                                        |                             |         |                         |
| A. oryzae                         | A. oryzae lipase (mdlB)                                        | Olein, methanol             | 90%     | Hama et al. (2009)      |
| A. oryzae                         | G. thermocatenulatus lipase                                    | Palm oil, methanol          | 90%     | Adachi et al. (2013a)   |
| A. oryzae                         | C. antarctica lipase B                                         | Plant oil hydrolysates,     | 90%     | Adachi et al. (2013b)   |
|                                   | N                                                              | methanol                    |         |                         |
| In vitro route (extracellular lij | •                                                              |                             | 0.50    |                         |
| P. pastoris                       | <i>R. oryzae</i> lipase                                        | Soybean oil, methanol       | 95%     | Li et al. (2011)        |
| P. pastoris                       | R. miehei lipase, P. cyclopium                                 | Soybean oil, methanol       | 95%     | Guan et al. (2010)      |
| D                                 | lipase                                                         | XX7 · 1 · · · 1 · · 1       | 070     | V. (2014)               |
| P. pastoris                       | T. lanuginosus lipase                                          | Waste cooking oil, methanol | 87%     | Yan et al. (2014a)      |
| In vitro route (surface display   | · · · ·                                                        | ~                           |         |                         |
| S. cerevisiae                     | R. oryzae lipase                                               | Soybean oil, methanol       | 78.3%   | Matsumoto et al. (2002) |
| P. pastoris                       | R. miehei lipase                                               | Soybean oil, methanol       | 83.14%  | Huang et al. (2012)     |
| P. pastoris                       | <i>R. miehei</i> lipase, <i>C. antarctica</i> lipase B         | Soybean oil, methanol       | 90%     | Jin et al. (2013)       |
| P. pastoris                       | <i>T. lanuginosus</i> lipase,<br><i>C. antarctica</i> lipase B | Soybean oil, methanol       | 95.4%   | Yan et al. (2012c)      |
| E. coli                           | S. haemolyticus lipase                                         | Olive oil, methanol         | 89.4%   | Kim et al. (2013)       |

#### Systemic approaches, metabolic engineering

| In vivo route |                                                                                                                                         |                                                                        |              |                               |
|---------------|-----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|--------------|-------------------------------|
| E. coli       | Overexpression of Pdc, Adh,<br>accBACD, tesA', WS/<br>DGAT, fadD; knockout of<br>fadE                                                   | Modified LB medium                                                     | 922 mg/L     | Duan et al. (2011)            |
| E. coli       | Overexpression of Pdc, Adh,<br>accBACD, tesA',<br>WS/DGAT, fadD; knockout<br>of fadE                                                    | Minimum medium, glycerol                                               | 813 mg/L     | Yang et al. (2013)            |
| E. coli       | Overexpression of Pdc, Adh,<br>TES, ACL, WS/DGAT,<br>xylanases (xyn10B and xsa);<br>knockout of fadE                                    | Glucose, xylose, hemicellulose                                         | 3.5–674 mg/L | Steen et al. (2010)           |
| E. coli       | Overexpression of Pdc, Adh,<br>TES, ACL, WS/DGAT,<br>xylanases and cellulase<br>(gly43F and xyn10B, cel3A<br>and cel); knockout of fadE | Ionic liquid- pretreated<br>switchgrass, xylan/<br>cellobiose, glucose | 71–405 mg/L  | Bokinsky et al. (2011)        |
| E. coli       | Overexpression of FAT,<br>FAMT, MAT                                                                                                     | M9 minimal medium, glucose                                             | 1.87–22 μM   | Nawabi et al. (2011)          |
| S. cerevisiae | Acc, WS                                                                                                                                 | SD medium, glucose                                                     | 8.19 mg/L    | Shi et al. (2012)             |
| S. cerevisiae | Disruption of DGA1, LRO1,<br>ARE1, ARE2 and POX1;<br>overexpression of WS                                                               | Glucose, YNB                                                           | 17.2 mg/L    | Valle-Rodríguez et al. (2014) |

#### Current approaches in biofuels production

- Designing photosynthetic microorganisms for production of photobiological solar fuels
- Microbial fuel cells (electrobiofuels)
- Technical cultures of engineered (and natural) strains of microorganisms
- Systems metabolic engineering of bacteria and yeast, creation of cell factories for high-value desired chemicals

### Biofuels produced by engineered microbes

- Lipids and fatty acids
- Fatty alcohols
- Ethanol, isopropanol
- Butanol, methylbutanol
- Hexanol, octanol
- Alkanes, alkenes
- Isoprenoids





Current Opinion in Biotechnology

#### Biodiesel in engineered E. coli



#### Biodiesel from Y. lipolytica



### Biodiesel in *E. coli*

# Synthesis of customized petroleum-replica fuel molecules by targeted modification of free fatty acid pools in *Escherichia coli*

Thomas P. Howard<sup>a</sup>, Sabine Middelhaufe<sup>a</sup>, Karen Moore<sup>a</sup>, Christoph Edner<sup>a</sup>, Dagmara M. Kolak<sup>a</sup>, George N. Taylor<sup>a</sup>, David A. Parker<sup>a,b</sup>, Rob Lee<sup>a,b</sup>, Nicholas Smirnoff<sup>a</sup>, Stephen J. Aves<sup>a</sup>, and John Love<sup>a,1</sup>

<sup>a</sup>Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, United Kingdom; and <sup>b</sup>Biodomain, Shell Technology Centre Thornton, Chester CH1 3SH, United Kingdom

Edited by Alexis T. Bell, University of California, Berkeley, CA, and approved March 15, 2013 (received for review September 13, 2012)





#### Stress engineering

- Biofuels producing bacteria may suffer from presence of the target compound
- Stress tolerance engineering is important
  - Targeted metabolic engineering
  - Stress-induced mutagenesis





2

0

10

8

6

Cycle

#### Reading



Available online at www.sciencedirect.com

ScienceDirect

BIOTECHNOLOGY ADVANCES

Biotechnology Advances 25 (2007) 464-482

www.elsevier.com/locate/biotechadv

Research review paper

## A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy

Zhuwei Du<sup>a</sup>, Haoran Li<sup>a</sup>, Tingyue Gu<sup>b,\*</sup>

 <sup>a</sup> National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, People's Republic of China
 <sup>b</sup> Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA

> Received 5 December 2006; received in revised form 10 May 2007; accepted 10 May 2007 Available online 23 May 2007

Read pages 465-470

