APPENDIX

Degenerate orbitals
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In several of our model systems, including square H, and trlaflin%uglr g;zrsa e
orbitals are degenerate, i.e., they have the same energy. We find deg
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(4-23) and ¢4 to —\/%qsz — 3¢5 (4-24). Degenerate orbitals must always therefore be
treated as a pair and never individually.
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(ii) Although the symmetry operation does not transform each degenerate orbital
into itself or minus itself, the new orbital has the same energy as the starting one. In
effect, if ¢; and ¢ j are two functions of the same energy then all normalized linear
combinations of the type Ap; + u¢ j are equally good functions with the same energy
(see Section 2.1.2¢).

(iii) This leads us to conclude that the degenerate orbitals which we obtained for
systems such as square planar H, (Figure 4.1) and triangular H; (Figure 4.5)
represent just one solution out of a whole host of possibilities. In general one can
replace such pairs of orbitals with a pair of linear combinations of the form

¢i = ¢;cos 0 + ¢;sin 0
¢ = —¢;sin 0 4 ¢ cos 0

We can easily show that the MOs ¢ and ¢} are normalized and orthogonal just like

; and ¢; themselves. Inr the cases of square planar H, (4-21 and 4-22) and triangular
H; (4-23 and 4-24) described above, rotation about the C, or C; axis respectively
transforms the initial pair of degenerate orbitals into an exactly equivalent pair which
may be derived by using 6 = /2 and 2m/3 respectively in these formulae.
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5 Interactions between
two fragment orbitals:
linear AH,, trigonal AH,
and tetrahedral AH,

When combined with symmetry ideas the fragment orbitgl method lezilds Ito tthhicse
determination of the molecular orbital dia_grams of many sn_nple molec}::.l ;s. 2 s
chapter we will study some molecules whlch have orbital diagrams w 1(:t Vn‘}eywill
assembled by the interaction of pairs of or}ntals, one from each fragme}?a P
derive the level structures of linear AH,, trigonal planar AH3. and tetr?t ; ra riodig
molecules (5-1) in which A is an element from the second or third row of the pe

N H
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table. We assume that all the A—H distances are equal and. only usehth;e1 \(/ialenec::le1
orbitals on the atoms concerned. These are thus the 1s orbitals on the b}_rt rloga "
atoms and the ns and np orbitals (n = 2 or 3)' for the A at.oms. The core }?r ita srla
ignored. As we have noted earlier since they lie very deep in energy a.nd t eir ol\i/eiblé)
integrals with other orbitals is tiny, their influence on bond forma'ltlonflihneg rlg)itals.

A vital aspect of our analysis concerns the symmetry properties 0 | efo pials
concerned. We will gradually introduce the symmetry labels for orbitals o \;ieor
types as the chapter progresses. Although thgse forrgally come fromd g;oup Y,
as we will see, no knowledge of the mathematics behind them is nee ed. e (o be

The molecules to be studied (5-1) have the common property of ben(lig at eh ?1 be
decomposed into the two fragments, A agd H,,' (H,, triangular Hj I:m teélae ;/I o
H,) whose orbitals we have already desqubed in ‘Chapter 4 In ea.ch ;ase he MO
will be generated by allowing the interactlonccl)lf p;:lrs ;)f orbzltlilsovlgl;cpai ;vz ; ot; e

rties. These, as we saw in Chapter 3 are the o ‘ rbit

atlrilcmhe}tlglf erlolfoen-zero overlap integral. If the principle itself is simple, its app{[lcatlc;ill
sometimes poses problems when some of the fragment orbitals are degenerate nall:tr
triangular H; and tetrahedral H,. It turns out that the use 'of one or two s;;r;:is ° z
planes is not sufficient to completely characterize the orbital symmetry.
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consequence of the rather simple approach to the molecular orbital problem used in
this book, but we will be able to make analogies between the symmetry properties

of the central atom orbitals and the molecular orbitals of the H, fragments to produce
a readily understandable picture.

5.1. Linear AH, molecules

We divide the molecule into two fragments; a pair of non-bonded atoms H, ... H,
which give rise to the orbitals oy, (bonding) and of;, (antibonding), and a central
atom A on which we keep the valence orbitals s, p,, p, and p,. The internuclear axis
is chosen as z. (Although ns orbitals (n > 2) have radial nodes as shown in 2-6 for
the 2s function, we shall ignore these in generating our orbital diagrams. Only the

overlap with the outermost part of the orbital is chemically important at normal
internuclear distances.)

5.1.1. Symmetry properties of the fragment orbitals

Consider the collection of symmetry elements the two fragments have in common.
This is effectively the collection of symmetry operations for the linear AH, molecule.
There are an infinite number of these. For example all planes which contain the z-axis
are planes of symmetry for the two fragments (5-2). In the same way a rotation of any

5-2 »y/

angle around z leaves the positions of the nuclei unchanged. Other elements of
symmetry include the xy plane perpendicular to z and containing the atom A, the
inversion center, i, located at A, etc. A general treatment of the symmetry problem
would study the behavior of the orbitals as a result of all of these symmetry operations
but we will content ourselves here by making a judicious selection of just one
symmetry element which will allow us to provide a symmetry classification good
enough to be able to decide which pairs of orbitals may interact via non-zero values
of their overlap integral.

The p, orbital on A (5-3) is antisymmetric (A) with respect to the yz plane, a nodal
plane of this orbital. Contrarily the orbitals oy, and of, are symmetric (S) with

5-3 px (A) oy, (S) Gy (S)




130 BUILDING UP MOLECULAR ORBITALS AND ELECTRONIC STRUCTURE

respect to this plane. Thus there is no interactiqn betwgen this p orbital andlthfﬁe
two hydrogen located orbitals since the overlap %ntegral is zero by symmetry.h rtl the
same way their behavior with respect to reflection in the xz .plane showsd‘F a g
p, orbital (A) may interact (5-4) with neither oy, nor of;, (S). This result was discusse

xz i 9
4 py (A)

in Section 3.4.4a; the overlap between a p orbital and an s orbital lying in its nodal
lane is zero. ' .

b We need now to consider the possible interaction between the s and p, orblta.ls

on the central atom and the oy, and ¢}, orbitals on H, ... H,. For these we w1_11

make use of the xy plane. It is clear to see (5-5) that both s and oy, are symmetric

e —® O—©

5 Sy, (S) G, (S)

5-5 5 ) @@ P, (A) o, (A)

with respect to this plane, but p, and of;, are both antis.ymmetfic (A). Tt is simple to
show that the overlap integrals associated with these interactions are non-zero. In

each case (5-6 and 5-7) the overlap integral of the central atorr} or.bital with each of
the hydrogen atoms is positive, so that the total overlap integral is different from zero.

* X + +

5-6 S=0 5-7 S#0

The construction of the molecular orbital diagram for the linear 'AHZ molecule
thus consists of two pairs of interactions between two fragment orbitals (5-8). The
positions of the AO energy levels depend of course on the nature of A but those
shown will be sufficient for our needs. This interaction scheme though applies to any
linear AH, molecule.
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5-9 shows a common labeling scheme for the set of orbitals under consideration,
using the conventions of group theory. The orbitals On,»> O, S and p, are all symmetric
with respect to rotation about the z-axis, that is to say they remain unchanged as a
result of any rotation about this axis. They are each labeled by 0. The oy, and s
orbitals are symmetric with respect to inversion and are thus labeled a,; the off, and
p. orbitals are antisymmetric with respect to inversion and are thus labeled g,. The
pair of orbitals p,, p, are not symmetric with respect to rotation about z and are
antisymmetric with respect to inversion. They are labeled as Ty

5.1.2. MOs for linear AH, molecules

The construction of the interaction diagram relies both on the symmetry properties
of the fragment orbitals and their relative energies. In the linear AH, molecule the
hydrogen atoms are far, apart. Accordingly since the overlap integral between the
two 1s orbitals is small the energies of the oy, and o, orbitals are similar and close
to that of the energy of an isolated hydrogen 1s orbital. The oy, orbital (bonding)
lies a little lower in energy than ofi, (antibonding). The energies of the s and p orbitals
depend upon the nature of A. The more electronegative A, the deeper these levels
lie. The values used in Figure 5.1 are those appropriate for beryllium (e,, = —9.4€V;
&y = —6.0eV).

The molecular orbital diagram is assembled simply by pairing up those orbitals
on the two framents with the same symmetry. Thus the s and oy, orbitals (g,) interact
to give bonding (lo,) and antibonding (20,) orbitals. In the same way interaction
between p, and af;,(0,) leads to a bonding (1o,) and antibonding (2¢,) pair. The p,
and p, orbitals are not changed in energy since they do not find a symmetry matched
with the H, ... H,, fragment. They become the degenerate, 7, MOs of the molecule.
We still call them molecular orbitals even though they are localized on one atomic
center.

The molecular orbitals thus fall into three groups (5-10).

(i) Two MOs bonding between the central atom and the hydrogen atoms, built

* from the in-phase combination of the fragment orbital pairs s and gy,, and p,
and of;,. Of these orbitals the lowest, 1a,, is that derived from the fragment
orbital which lies lowest in energy.
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20,

e Be—o H—Be—H H——=—H

Figure 5.1. Construction of the MOs of a linear AH, molecule. (The relative AO energies
are appropriate for A = Be.)
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(ii) Two MOs, antibonding between the central 2.lt0n.l and the hydrogen atoms
(20, and 20,) built from the out-of-phase combinations of these same fragment
orbitals. —

(iii) Between these two groups, two degenerate MOs completely localized on
central atom, and therefore with no contribution from the hydrogen atom

orbitals. Such orbitals are called nonbonding orbitals.
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Although the details of the molecular orbital diagram depend upon the nature of
the central atom, this general description in terms of two bonding, two nonbonding
and two antibonding orbitals is a general one, applicable to all linear AH, molecules.

5.1.3. Application to BeH,

BeH, is a linear triatomic molecule which has four valence electrons. In its electronic
ground state the lowest two orbitals, lo, and 1o, are therefore doubly occupied to
give the configuration 17 167 (5-11). These two orbitals are bonding between the

O-C@®@® == 1
g @ 0 =t

central atom and the hydrogens. With two bonding pairs of electrons we should
expect two Be—H bonds as indeed indicated by the Lewis structure H—Be—H.
Notice however, that it is not possible to identify one doubly occupied bonding
orbital with one Be—H bond, and the other with the second Be—H bond. Each
bonding MO is equally associated with both Be—H bonds. The one 2p (2p,) and
one 2s orbital on beryllium are then equally associated with each Be—H linkage in
the bonding orbitals in which they are involved. We say that these orbitals and the
electrons in them are delocalized over the whole molecule in contrast to the localized
viewpoint of the Lewis structure.

The pattern of ionization energies for BeH, leads to some further insight into this
delocalized view of the bonding problem. From Figure 5.1 it is clear that the
ionization energy depends upon the origin of the ejected electron. The ionization
energy from the 1o, orbital is larger than that from lo,. From the Lewis viewpoint
one might have expected just a single ionization energy. Thus, although the two
Be—H bonds are equivalent in every way the molecular orbitals which describe them
are not. Later in the Appendix to Chapter 8 we will show an interesting connection
between the two viewpoints.

5.2. Trigonal planar molecules

The natural fragmentation of the AH, molecule, where the angles between the A—H
bonds are 120°, is into a central A atom and a collection of three H atoms at the
corners of an equilateral triangle. We described the energy levels of such an H; unit

_in the previous chapter. The levels of the A atom to be used are just the valence s

and p orbitals.

5.2.1. Symmetry properties of the fragment orbitals

The two fragments, A and H, have many symmetry elements in common, among
them (5-12) the molecular plane (xy), three two-fold rotation axes (x being one of
them) collinear with the A—H bonds, three symmetry planes perpendicular to the
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A >
y
5-12 Ha H,

mirror plane and containing an A—H bond (xz for example) and the z-axis which
is a three-fold rotation axis. From all of these symmetry elements we will only keep
the molecular plane (xy) and the xz plane in order to characterize the syrnm.etry
of the molecular orbitals. In doing this we ‘reduce’ the symmet.ry of thg system (smge
the number of symmetry elements has decreased) but as we will see this new set will
ient for our needs. ‘ . '
be/iﬁfﬁoi? our fragment orbitals will be either symmetric (S) gr‘antlsymmetrlc (A) with
respect to reflection in these planes of symmetry. So ther_e is J.ust one AS orbital ( i)Z)
which is antisymmetric with respect to xy but symmetric with respect to xz (5-13)

/é\ e
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5-13

two SA orbitals (¢, and p,) and four SS orbitals (d)'l, ¢s, s and p,). This prellmlr}arly
analysis allows us to separate the fragment orbitals into three groups (5-.13). Orbitals
in one group may not interact with orbitals from another since their symmetry
properties with respect to one or other of the planes xy or xz are different. One can
conclude therefore that the p, orbital, the only orbital of AS symmetry, cannot take
part in any interaction. We now have to determine whether the overlaps between
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orbitals from within the same group are different from zero. In effect, if it turns out
that a pair of orbitals have different behavior with respect to a symmetry element
ignored in the simple treatment, then the overlap is of course zero. The overlap
between the orbitals ¢, and p, (AS) is non-zero since the contributions from py—lsy
overlap are both of the same sign (5-14). But now consider the case of four orbitals
of SS symmetry. For the pairs (s, ¢,) and (p,, ¢,) the overlaps involved are different
from zero since all the contributions between the central orbital and each of the Isy
orbitals are of the same sign (5-15 and 5-16). However, consider the overlap integrals
between s and ¢, and between p, and ¢,. The first of these (5-17) is made up of a
positive contribution from s and 1s, and two negative contributions from s and 1s,
and ls,. Since the coefficient of 1s, is twice as large, in an absolute sense, than the
coefficients of 1s, and 1s, (see Section 4.1.5) the total overlap integral is identically
zero. A similar situation holds (5-18) for the overlap between p, and ¢,. The three

>+ >++
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coefficients on the hydrogen atoms are equal in ¢, but the overlap integral with p,
varies as the cosine of the angle the A—H bond makes with the x-axis (see Section
3.4.3). Thus there is one positive overlap (where this angle is zero) and two negative
overlaps (where this angle is 4 120°). Thus the total overlap integral is proportional
to cos(0°) + cos(120°) + cos(—120°) =1 — 1 —1 = 0.

We should point out at this stage that the zero overlap integral between orbitals
of the ‘same symmetry’ (SS) is a consequence of the reduction in symmetry we used
to make this problem tractable. The two pairs of orbitals, (s, ¢,) and ( Dx»><$3) do in
fact have different symmetry if all of the symmetry elements are used.

In order to construct a molecular orbital diagram for the AH; molecule we use
the same technique employed for the linear AH, system, namely only fragment
orbitals with non-zero overlap may interact. This reduces the orbital problem to one
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of interactions between the three pairs of orbitals, s and ¢1,.py and‘c;S2 and p, and
¢, as shown in 5-19. The p, orbital is not involved in any interaction. The actual

Pz [

Px Py eo—
\= 02 P
/— (p1

the diagram will vary from one AH; molecule to another since Fhe energies
i)ofrtrlrllecz:fentral at%)m s and p orbitals depend upon the identity of A, but the interactions
shown are the same irrespective of the identity of the system. '

As described before for the AH, molecule we usually attach group theoretical lapels
to describe the orbitals of the fragment. The s orbital is labeled ;. Her.e, a desgrlbes
a non-degenerate level, just as o did in the linear molecule, and the 51_ngle prime a
function symmetric with respect to reflection in the p_lane' perpendicular to .the
three-fold axis (z). The p, orbital is labeled a4, antisymmetric with rf:sppct to reflection.
The pairs of degenerate levels carry an e label, just like the la.bel 7 in llnegr r_nole'culesl.
Both p,, p, and ¢,, ¢; are labeled ¢’ (5-20) although we will want to distinguish e}

(p, and ¢3) and ¢, (p, and @,). '
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Figure 5.2. Construction of the MOs of a trigonal planar AH; molecule. (The relative AO
energies are appropriate for A = B).

13

5.2.2. MOs of trigonal planar AH,4

The fragment orbital interaction diagram of Figure 5.2 corresponds to that for BH,
where ¢,, = —14.7 eV and &, = —5.7€V. The energies of the H, fragment orbitals
straddle the energy of an isolated 1sy orbital, since ¢, (bonding) lies a little below

and ¢, and ¢; (antibonding) a little above. Their splitting is small since the

interaction between the hydrogen 1s orbitals is small as a result of the large
H—H separation. First of all we readily see that the p. orbital (1a3) is unchanged in
energy. The orbitals ¢, and 2s, both of @} symmetry interact to give a bonding orbital
(1a}) and an antibonding orbital (24)). Similarly the orbital pairs, ¢5 and p, (.),
and ¢, and p, (e;) interact to give a bonding pair (le, and le;) and an antibonding
pair (2¢; and 2e}). The orbitals 1e, and le, are degenerate, as are 2¢. and 2e,; as
shown in exercise 5.1, since the overlap integrals associated with the x and y partners
of a degenerate pair are equal the resultant molecular orbitals are degenerate.
The origin of this degeneracy comes just as in triangular Hy from the presence of a
three-fold rotation axis in the molecule.
The MOs of trigonal planar molecules thus divide into three groups (5-21).

(i) Three MOs bonding between the central atom and the hydrogen atoms. These
are ld}, lé, and lej, in-phase combinations of the fragment orbitals (¢4, 9),
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(¢, p,) and (¢3, p,) respectively. The deepest lying orbit.al, 1d] is the one that
comes via interaction of the deepest lying fragment orbitals.

(ii) Three MOs antibonding between the central atom and the hydrqgen atoms.
These are 24, 2¢, and 2¢, and are the out-of-phase combinations of the
fragment orbitals. ' ' ) 1

(iii) Between these two groups there is a non-bonding orbital (laz)', complete y
localized on the central atom without any hydrogen atom contribution.

5.2.3. Application to the electronic structure of BH;

BH, is a short-lived molecule, rapidly dimerizing to give .BZH‘S’ although many of
the reactions of the latter may be understood via an equilibrium between the two
but lying very much in favor of the dimer. It is a trigonal planar melecule with six
valence electrons. In its electronic ground state the three.lowest energy levels are
doubly occupied to give (5-22) 1a? 1¢? 1e}?. These three_: orbitals are l?ondlng betwegn
the central atom and the hydrogen atoms thus providing a connection to the Lewis
structure with three B—H bonds each made up of two electrons. ngever, as t?efore
for AH,, although it is not possible to identify the two electrons in one partlcl{lar
MO with a particular B—H bond, the collection- of thr§e do/ubly occupied bonding
orbitals gives rise to three chemical bonds. Obviously in 1a} each of th.e hydrogen
atoms are bonded equally to the central atom since the cgrres(pgndmg over!ap
integrals are equal. The situation is more complex in the e pair. 1¢] is only pondmg
between the boron atom and two of the hydrogen atqms (H, and H.C) since the
coefficient on Hy, is zero. Contrariwise the le) orb%tal is largely bonding between
boron and H,. In this orbital the coefficient on H is twice as large as those on H,
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5-22

and H,. In addition the 2p, orbital points directly at H, and so its overlap will be
larger than with H, or H,. In fact if one considers the orbitals le, and le; as a pair
one can show that they lead to equal bonding character between the central atom
and each of the hydrogen atoms. Thus consideration of the trio of doubly occupied
bonding orbitals leads to the conclusion that the three B—H bonds are equivalent
in every way. However the three molecular orbitals which lead to this picture are
not energetically equivalent (5-22). It is easier to eject an electron from the 1¢’ level
than it is from the 1} level. There are then two different ionization energies for the
molecule which depend upon the origin of the ionized electron. We must once again
clearly recognize the equivalence of three B—H bonds which arise via the occupation
of three clearly non-equivalent orbitals. ‘

A final point merits mention. The lowest unoccupied orbital in BH, is a
non-bonding p orbital (1a3). This orbital, vacant and low in energy, is susceptible to
donation by a pair of electrons. If this electron pair is associated with an H™ ion such
that BH; + H™ — BH, ™, then we can readily see the origin of the Lewis acid
properties of such a spe¢ies.

5.3. Tetrahedral AH, molecules

The natural decomposition for a tetrahedral AH, molecule is into a central A atom
and a tetrahedron of hydrogen atoms. The levels of the latter, a tetrahedral H, unit

were studied in the previous chapter. The fragment orbitals for the atom A are just
its valence s and p orbitals.

5.3.1. Symmetry properties of the fragment orbitals

The fragments A and H, have many symmetry elements in common, among them
(5-23) six planes of symmetry containing two A—H bonds (xz and xy are two

z
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examples), three C, axes which bisect opposite pairs of H—A—H angles (x for
example) and four C; axes collinear with the A—H bonds. As before we will just
retain two planes (xz and xy) in order to distinguish between the orbitals concerned.
There are two SA orbitals (¢, and p,) symmetric with respect to xz and
antisymmetric with respect to xy, two AS orbitals (¢5 and p,) and four SS orbitals
(¢1, $5, s and p,) as shown in 5-24. The fragment orbitals thus separate into three
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groups. Recall that orbitals belonging to different groups may not interact, but we
still have to look carefully at the overlaps between orbitals within each group. We
can see that overlap between the p, and ¢, orbitals is non-zero since the individual
overlaps between p, and 1sy orbitals are of the same sign (5-25). The same is true
for p, and ¢5 (5-26). For the orbitals of SS symmetry we need to consider the two
pairs (s, ;) and (p,, ¢,). In each case since all of the individual overlaps between
1s orbitals and the central atom orbital are of the same sign (5-27 and 5-28) the
total overlap integral is non-zero and the orbitals within each pair may interact. This
is not the case for the overlap between (s and ¢,) and (p, and ¢,). Just as we showed
for the related AH, case, the overlap integrals between these pairs are identically
zero (5-29 and 5-30). In both cases the two positive overlap integrals are exactly
cancelled by the two negative overlap integrals. Also, as in AH,, these zero overlap
integrals between orbitals of the ‘same symmetry’ come about because of the
reduction of the tetrahedral symmetry to just the two planes xz and yz. Use of the
full symmetry removes this problem. In conclusion, just as in all of the preceding
examples, only the orbitals of the same symmetry, with non-zero overlap may interact.

The construction of the molecular orbital diagram for tetrahedral AH, thus reduces
to a question of the four pairs of interactions of 5-31, the variation from one molecule
to another being set by the central atom s and p orbital energies dependent upon the
identity of A. We will use in what follows the group theoretical labels for these orbitals
(5-32). Both s and ¢, are of a, symmetry and the trios (x> Py» P2) and (¢3, ¢3, b4)
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Figure 5.3. Construction of the MOs of a tetrahedral AH, molecule. (The relative AO
energies are appropriate for A = C).

are of t, symmetry. (The label ¢ is used for triply degenerate levels.) We may
distinguish ¢, (px and ¢,), t5, (p, and ¢3) and t,, (p, and ¢,). Notice that here (and
in the AH, molecule too) there is no center of symmetry unlike the situation in linear
AH,. Accordingly the subscript g or u which described the behavior with respect to
inversion is inappropriate here.

5.3.2. MOs of tetrahedral AH, molecules

The fragment orbital interaction diagram of Figure 5.3 corresponds to the case of
CH, where e, = —19.4eVand ¢, = —10.7 eV. The H, fragment levels lie just below
(¢, is H—H bonding) and just above (¢,, ¢5 and ¢, are H—H antibonding) the
energy of an isolated lsy orbital (— 13.6 eV). The orbitals ¢, and s (a,) interact to
give bonding (1a,) and antibonding (2a,) partners. Interaction between ¢, and p,,
between ¢, and p, and between ¢, and p, leads to the formation of three bonding
MOs, 1t, (1t,y, 1t5,, 1t,,) and three antibonding MOs 2t, (2t,,, 2t,,, 2t5,). The set
of 1t, levels is degenerate, as is the set 2¢,. As shown in exercise 5.2 the pairwise
overlap integrals between orbitals of each degenerate set, $,, ¢, and ¢, on H, with
respectively p,, p, and p, on A, are equal. This triple degeneracy comes about because
of the high symmetry of the tetrahedral molecule.

The molecular orbitals of tetrahedral AH, molecules divide into two sets (5-33).
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(i) Four MOs bonding between the central atom and the hydrogens. These are
lay, 1t,,, 1t,,, 1t,,, in-phase combinations of the fragment orbitals (¢, s),
(?52,' Px), (@3, py) and (¢, p,) respectively. The deepest lying orbital, 1a,, arises
via interaction with the deepest lying fragment orbitals. (The three 1¢, orbitals
are degenerate.)

(i) Four MOs antibonding between the central atom and the hydrogens. These
are 2a,, 2t,,, 2t,, and 2t,, out-of-phase combinations of the same fragment
orbitals. (The three 2¢t, orbitals are degenerate.)

5.3.3. Application to the electronic structure of CH,

In the methane molecule, with a total of eight valence electrons, the lowest four
molecular orbitals are doubly occupied in the electronic ground state to give the
electronic configuration la? 1t3, 1¢3, 1¢3, or 1ai 1¢5 as in 5-34. These four occupied
bonding orbitals correspond to the four C—H bonds of the Lewis structure. The
central atom uses one s and three p orbitals to form these bonds. Just as in our
earlier AH, and AH, examples it is not possible to make a one-to-one correspondence
between a single delocalized molecular orbital and a particular C—H bond. In the
la, orbital the bonding character is the same between the central atom and each of
the hydrogens since the hydrogen coefficients are all equal. The same is true for the

_ 1t,, orbital. Here all of the coefficients are equal in absolute magnitude and each of

the A—H bonds make the same angle (one half of the ‘tetrahedral” angle, 109.5°/2)
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with the axis (x) of the p, orbital. On the other hand the 1z,, or.bita! is bonding only
between carbon and -H, and H,, and the 1¢,, orbital is bonding in the same way
between carbon and H, and Hy. It is the collection of four occupied MOs taken
together which lead to four equivalent C—H bonds. '

Finally, all of the occupied MOs are not of the same energy, 1a, lymg deeper' than
1t,. This prediction from molecular orbital theory is conﬁrrped experlm-entally via the
photoelectron spectrum. There are two ionization energies which differ .by. abc?ut
10eV. To conclude, just as in the earlier examples it is necessary to distinguish
between the equivalence of the four C—H bonds and the non-equivalence of the four
occupied molecular orbitals (split into the two sets 1a; and 1z,).

EXERCISES

5-1  Overlap integrals between fragment orbitals in AH,
We will consider the orbitals ¢, and ¢, on the triangular H unit and the Px
and p, orbitals on the A atom which lead to the levels of the trigonal planar
AH; molecule. The values of the coefficients in the orbitals ¢; are those that
were calculated by including the overlaps between the 1sy orbitals in Section
4.1.5b. § is the overlap integral between two 1sy orbitals.

_2
i j V6(1-S)
V2(1-s) _L_+2(1-5) q g
\V6(1-S) V6(1-S)
¢2 (] py px

Show that the overlap integrals S, = (¢, | p,> and S; = {¢5 | p,)> are equal.
(Call S, the overlap integral between a p orbital and a 1s orbital lying along
the p orbital axis at a distance d = A—H.)

5.2 Overlap integrals between fragment orbitals in AH,
Show in the same way that the overlap integrals between the pairs of fragment
orbitals S, = {¢, | p,>, S3 = {¢5 | pyy and S, = (¢, | p,» in tetrahedral AH,
molecules are equal. The values of the coefficients in the orbitals ¢; are those
that were calculated in the exercise 4.1. Note that the angle between the bonds
in a tetrahedron () is 109.5° and verify that cos(e/2) = 1/./3.

B3 -
1 &é “ln..g_
Px Py Pz

53 S iar-shaped H,

Construct the molecular orbitals of star-shaped H, starting from the two
fragments, triangular H, and a single central H atom.
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(i) Give the symmetry properties of the fragment orbitals with respect to the
yz plane. Deduce immediately the form of one of the MOs of star-shaped
H,.

(i) Analyze the overlap integrals between the symmetric orbitals of the two
fragments and derive a second MO.

(iii) Construct a complete molecular orbital diagram given the fact that the
highest MO is non-degenerate. Give the form of all of the MOs.

54 Trigonal bipyramidal Hs
Construct the energy level diagram of trigonal bipyramidal Hs. The atoms H,
and H, lie along the z-axis and H,, H, and H, lie at the vertices of a trigonal
plane. Make all of the distances of these hydrogen atoms to the origin equal
and construct the MOs of this system from the two fragments, triangular Hj

(H, H, H,) and linear H, (Hy ... H,) units.

(i) Describe the relative energies of the fragment orbitals, taking into account
the distances between the hydrogen atoms.

(ii) Use the xy plane of symmetry to find one of the MOs of Hs.

(iii) Use the xz plane to determine a second MO.

(iv) Analyze the overlap integrals between the orbital pairs symmetric with
respect to reflection in both of these planes. Hence determine a third MO
of Hs.

(v) Construct the complete orbital interaction diagram, given the fact that the
highest energy orbital is non-degenerate. Give the form of each MO.

55 Analogy between the orbitals of square planar H, and those of a central A atom

(see Appendix)
Decompose a square planar AH, molecular into the two fragments, A and

square planar Hy.
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@) Establi§h the orbital analogy between the MOs of square planar H, (¢,—¢
) of Section 4.1.1) and the AOs (s, D« Dy, P;) of the central A atom.4 e
(ii) Do the same but for the case where the four hydrogen atoms lie along the ‘

ZTS x and y. In this case use the H, fragment orbitals determined in exercise




