IEF 1 Isoelectric focusing K. Šlais 10/3/2017 IEF 2/7910/3/2017 IEF 2/79 Isoelectric focusing - IEF  Electromigration separation analytical method based on existence of isoelectric state of ampholytes, where the effective charge is zero.  pH = pI  Analytes - proteins  Separation - DpI < 0.01  Focusing – concentratrion  Characterization - pI 10/3/2017 IEF 3/7910/3/2017 IEF 3/79 Protein as ampholyte 10/3/2017 IEF 4/7910/3/2017 IEF 4/79 Simul 5 10/3/2017 IEF 5/7910/3/2017 IEF 5/79 Kinds of IEF  Gel IEF – With carier ampholytes  With immobilised gradient (IPG)  Two dimmensional electrophoresis 2D = IEF+SDS PAGE  Capillary IEF  Preparative IEF  Free flow IEF  Chamber IEF 10/3/2017 IEF 6/7910/3/2017 IEF 6/73 Typical result of gel IEF IEF 2 10/3/2017 IEF 7/7910/3/2017 IEF 7/73 pI standards - proteins ? stability ? purity ? price ? color ? solubility at pI 10/3/2017 IEF 8/7910/3/2017 IEF 8/73 Low molecular mass colored pI markers  Demands on pI markers - Scale of pI from ~ 2 up to 11, step ~ 0.5 pI - good ampholytes, -dz/dpH ~0.5 > 0.05, DpK ~2 < 4 - water solubility at pH = pI, > 1 mg/ml - different colours lmax > 400 A1% > 100 - Purity > 99 % ,  - Availability, price of pI marker - Stability - hydrolysis, oxidation, photodegradation, microorganisms 10/3/2017 IEF 9/7910/3/2017 IEF 9/73 Aminomethylated nitrophenols 10/3/2017 IEF 10/7910/3/2017 IEF 10/73 Yellow pI markers 10/3/2017 IEF 11/7910/3/2017 IEF 11/73 Example of colored pI marker 10/3/2017 IEF 12/7910/3/2017 IEF 12/73 pK1 = 3.50 ± 0.02 pK2 = 5.92 ± 0.02 pI = 4.71 ± 0.02 Spectrophotometric determination of pI N N N N Me Me HO2 C IEF 3 10/3/2017 IEF 13/7910/3/2017 IEF 13/73 Determination of pI by interpolation in gel IEF Gradient pH Mixture of 30 simple buffers Biolyt 3 – 10 10/3/2017 IEF 14/7910/3/2017 IEF 14/73 Dynamic of focusing in gel IEF 10/3/2017 IEF 15/7910/3/2017 IEF 15/73 Dynamic of pH gradient Biolyt 3-10 Linear gradient pH 4 - 10 After ½ hour small changes in pH gradient 10/3/2017 IEF 16/7910/3/2017 IEF 16 Dynamic of focusing in gel IEF determination of focusing end 10/3/2017 IEF 17/7910/3/2017 IEF 17/73 Development of fluorescent pI markers Vis fluorescence 10/3/2017 IEF 18/79 pI markers 10.1 9.3 8.4 7.5 6.4 5.3 3.9 Cytochrome C Myoglobin Albumin β – amylase 2μl 4μl Mass spectrometric characterization of low-molecular-mass color pI markers and their use for direct determination of pI value of proteins Mazanec, K, Slais, K., Chmelik, J. J. Mass Spectrom. 41 2006 1570-1577 0 50 100 %Int. 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 Mass/Charge 1[c].17 2[c].17 3[c].11 4[c].11 36 mV 8.4 mV 7.6 mV 42 mV 45B_0002, 22A_0002, 03A_0001, Smeska2_0002 Kratos PCKompact SEQ V2.3.0 247.4 296.0 237.5 239.5 280.0 267.5 358.6295.4 345.6251.4 373.6230.9 333.7 266.0 264.0 277.5 317.9 357.5265.5 246.8 297.2278.0246.9 251.2 296.5 301.9 237.0 343.7 318.9 331.8232.9 358.0345.1 302.9 372.9360.2 376.0 346.3 327.9 306.9 333.0 313.6 Mass spectra of nitro-substituted pI markers Pardubice 2005 yellow markers IEF 4 10/3/2017 IEF 19/7910/3/2017 IEF 19/73 2D Gel electrophoresis SDS PAGE IEF 10/3/2017 IEF 20/7920 0 2 4 6 8 10 12 14 16 18 20 0 1000 2000 3000 4000 5000 6000 7000 8000 Voltage[V] 0 2 4 6 8 10 12 14 16 18 20 0 5 10 15 20 25 30 35 40 Time [h] Current[µA] Voltage practical Voltage theoretical Current practical Credit: Deng, X., Hahne, T., Schröder, S., Redweik, S., Nebija, D., Schmidt, H., Janssen, O., Lachmann, B., Wätzig, H., (2012). The challenge to quantify proteins with charge trains due to isoforms or conformers. Electrophoresis, 33(2), 263–9. doi:10.1002/elps.201100321 Voltage and current record in IEF on IPG strip 10/3/2017 IEF 21/7910/3/2017 IEF 21/73 Strips rehydrated 2 hours under Kerosene run native 7 hours with Nitrogen Amersham Multiphor. Test of color pI markers - LM ladder Hanspeter Schickle, ETC Elektrophorese-Technik GmbH, Kirchentellinsfurt, Germany Courtesy of Dr. Hanspeter Schickle, 10/3/2017 IEF 22/7910/3/2017 IEF 22/73 in Clinical Proteomics. From Diagnosis to Therapy. J. Van Eyk and M.J. Dunn (Eds.), Chapter 2, Protein Separation by Two-Dimensional Electrophoresis Pamela M. Donoghue, Miroslava Stastna, Michael J. Dunn, p 13, 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Immobiline Dry Strip (Amersham Biosciences) pH 3–10, 18 cm. Apparatus: Protean IEF Cell (BioRad). Sample: 10 ml of pI markers mixture diluted with 340ml of IEF buffer (8M urea, 2M thiourea, 4% CHAPS, 1% DTT, 0.01% bromophenol blue, 1.5% (v/v) hydroxyethyl disulfide, 0.2% (v/v) IPG buffer pH 3–10). The acidic end is on the left and the basic end on the right side of the strip. The pI values of individual pI markers are marked in the picture IEF of mixture of chosen pI markers in the first dimension strip of 2D gel electrophoresis 10/3/2017 IEF 23/7910/3/2017 IEF 23/73 2D - typical result – silver staining 10/3/2017 IEF 24/7910/3/2017 IEF 24/73 2D Gel electrophoresis - Software IEF 5 10/3/2017 IEF 25/7910/3/2017 IEF 25/73 Protein identification by 2D gel electrophoresis -MS Use of coloured pI - markers to determine the slope of the pH gradient and the position where to ‚cut‘ and remove the individual Sephadex fractions in order to fit to the corresponding narrow pH range IPGs Courtesy of Carsten Lück Methods in Molecular Biology, vol. 424: Volume 1: Sample Preparation and PreFractionation, Edited by: A. Posch , Chapter 22, Sample Prefractionation in Granulated Sephadex IEF Gels Angelika Görg, Carsten Lück, and Walter Weiss, p 277, Humana Press Inc., 2007, Totowa, NJ IEF in Granulated Sephadex Gels 10/3/2017 IEF 27/7910/3/2017 IEF 27/73 pI markers - LM ladder Home made strip, linear gradient pH 4-10, 11cm, 1 min 30V, 50 min 30V -> 3500V, 2 hours 3500V. IEF in Sephadex gels and IPG strips Hodný Z., Přidalová J., Institute of Experimental Medicine AV ČR, v.v.i., Prague Courtesy of Z. Hodný Courtesy of J. Přidalová 10/3/2017 IEF 28/79 Micropreparative sIEF in nonwoven strip 28 10/3/2017 IEF 29/79 sIEF with carrier buffers and colored pI markers focused mixture: 0,15 ml stock of 12 carreir buffers 0,05 ml stock pf colored pI markers 0,15 ml ethylen glycol; 0,05 ml butanolu 0,1 ml water29 10/3/2017 IEF 30/79 Animation of separation course • Time of separation cca 12 hours – Evenimg - Sampling and power switch on – Next morning – fraction harvest 30 IEF 6 10/3/2017 IEF 31/79 Harvest and extraction of fractions 31 10/3/2017 IEF 32/79 Whey fractionation • Aim – pure caseinomacropeptide – sample – 1% (m/V) solution of raw dry whey – Additional spacers – IMAC (imidazol-1-yl-acetic acid) and Tris (tris(hydroxymethyl)aminometane) program of power source: 100 V – 200 V 4 h. 200 V – 1000 V 4 h. 1000 V – 3000 V 4 h. 3000 V  harvest vzorek: 0,375 ml 1% (w/v) whey; 0,05 ml stock colored pI markers; 0,1 ml ethylen glycol; 0,05 ml butanol; 0,025 ml 0,1 mol·l-1 IMAC; 0,1 ml of 0,1 mol·l-1 Tris; extraction: 6mm strip segment in to 100 µl water 32 10/3/2017 IEF 33/79 HPLC analysis of sIEF fractions Kolona Microbore Poroshell 300SB-C18 (5 μm částice, 1×75 mm) + C18 předkolonka, při 70 °C Průtok 20 μl·min-1 Voda/ACN s 0.1% (v/v) TFA lineární gradient od 5 do 80 % (v/v) ACN (30 min) dávkovaný objem: 4 µl 33 10/3/2017 IEF 34/79 Content of proteins in fractions Výtěžek: glykosylovaný CMP 44 % neglykosylovaný CMP 80 % α-laktalbumin 77 % β-laktoglobulin 101 % 34 10/3/2017 IEF 35/7910/3/2017 IEF 35/73 Capillary IEF 10/3/2017 IEF 36/7910/3/2017 IEF 36/73 Capillary IEF of standards proteins pI markers IEF 7 10/3/2017 IEF 37/7910/3/2017 IEF 37/73 CIEF of microorganisms Sample: E. coli, C. albicans, S. epidermidis, E. faecalis in physiological saline solution, 4 x 108 cell ml-1. 10/3/2017 IEF 38/7910/3/2017 IEF 38/73 CIEF viruses with UV detection 10/3/2017 IEF 39/7910/3/2017 IEF 39/73 Patogenes of different sources Tapered capillary in cIEF 10/3/2017 IEF 41/79 Effect of treatment of 100 μm i.d. fused silica capillary with supercritical water in semi-dynamic mode. Experimental conditions: 400 °C, 32 MPa, 20 replacements of supercritical water. Supercritical water in preparation of tapered fused silica capillaries 10/3/2017 IEF 42/79 Dependence the local internal diameter of etched fused silica capillary on the capillary length. The cutout of the segment used as the tapered capillary in cIEF and the detection window are indicated. IEF 8 10/3/2017 IEF 43/79 10/3/2017 IEF 44/79 Resolution of several Dickeya bacterium species with similar isoelectric points by capillary isoelectric focusing employing cylindrical (left) and tapered (right) capillary. Combination of Capillary Isoelectric Focusing in a Tapered Capillary with MALDI-TOF MS for Rapid and Reliable Identification of Dickeya Species from Plant Samples Horka, M; Salplachta, J; Karasek, P; Kubesova, A; Horky, J; Matouskova, H; Slais, K ; Roth, M ANALYTICAL CHEMISTRY Volume: 85 Pages: 6806-6812 , JUL 16 2013 10/3/2017 IEF 45/7915. dubna 2013 IEF, 45/79 Preparative Liquid phase IEF Total 2.5 ml sample Ten 0.25 ml fractions 2 hours run time Rotofor MicroRotofor pI = 5.3pI = 3.9 Preparative autofocusing of peptides + pI markers Tomas, R; Yan, LS; Krenkova, J; Foret, F. ELECTROPHORESIS, 28 (13): 2283-2290 2007 10/3/2017 IEF 46/7946 ZOOM® IEF Fractionator (Invitrogen) • Focusing chambers are separated by polyacrylamide discs with immobilized pH • Proteins have to pass through discs toward their pI • Chamber volume 650 µl • Sample preparation: dissolve, denaturation, alkylation Use of pI-dye markers as online trackers for the focusing of peptides during electrophoresis on the OFFGEL fractionator device (OGE). 22 hours runtime Courtesy of M. Heller DKF, University of Bern, Switzerland P.E. Michel, F. Reymond, I. L. Arnaud, J. Josser, H. H. Girault, J. S. Rossier, Electrophoresis 2003, 24, 3–11 Agilent 3100 OFFGEL Fractionator pI-based fractionation of proteins and peptides with liquid-phase recovery. introduced May 30, 2006, Codeveloped with DiagnoSwiss S.A. OFF - GEL electrophoresis Use of pI-dye markers as on-line trackers for the focusing of peptides during electrophoresis on the OFFGEL fractionator device (OGE). •pI-marker dyes were added at 10 ug (dark orange, pI 3.9; violet, pI 5.2; red, pI 6.2; bright orange, pI 8.0) or 30 ug (yellow, pI 10.1), respectively. •Peptide/dye solution was distributed into the 13 wells of the OGE. •IPG strips pH 3-10 from BioRad re-hydrated in OGE buffer were used. •Focusing was done by setting a maximal potential (1250 or 1500 V) and a current limit of 50 uA. Courtesy of M. Heller, DKF, University of Bern, Switzerland IEF 9 10/3/2017 IEF 49/7910/3/2017 IEF 49/73 Free-Flow Electrophoresis The miniaturization of FFE implies several advantages especially considering sample volume and separation speed. In contrast to the tens of milliliters of sample consumed by conventional large scale FFE devices, microfluidic FFE systems require only tens of nanoliters up to hundreds of microliters of sample. This is especially interesting in clinical analysis where often only low sample volumes are available. Furthermore, instead of residence times of up to tens of minutes, microfluidic FFE (µ-FFE) devices separate within several seconds. 10/3/2017 IEF 50/793.10.2017 IEF 50/79 FFIEF of seven fluorescent IEF markers Voltage = 150 V, current = 50 mA Markers (pI 4, 5.1, 6.2, 7.2, 8.1, 9, and 10.3) are fully separated within less than 2 s. The sample flow rate was 0.4 mL/min (v = 2 mm/s). The apparent kinks in the fluorescent tracer paths are caused by merging multiple photographs. Copyright American Chemical Society. © 2008 colorless fluorescent markers Microfluidic high-resolution free-flow isoelectric focusing Kohlheyer, D., Eijkel, J. C. T., Schlautmann, S., van den Berg, A., Schasfoort, R. B. M., Anal. Chem. 2007, 79, 8190–8198. 10/3/2017 IEF 51/79 WEBER, Gerhard; Margeritenweg 23 85551 Kirchheim (DE). WO/2002/050524, 07.12.2001, Preparative Free Flow Electrophoresis FFE Service GmbH Dr. Gerhard Weber D-85551 Kirchheim Germany 3.10.2017 24th Nov. 08 5th CECE 52 Basic ideas  Fluidics - continuous widening of the flat channel while the liquid flows from channel inputs toward the outputs which generates a divergent flow and, at the same time  IEF - small transversal voltage drop at the channel input and high transversal voltage drop at the channel output. Divergent Flow IEF (DF IEF) Šlais K. Electrophoresis 29 2008 2451-2457 27th Nov. 07 soutez 07 53 Carriers & analytes anolyte catholyte High flow velocity Short separation path Fluidics – divergent flow Divergent flow IEF Membranes 27th Nov. 07 soutez 07 54 + - high low k Separated fractions Carriers & analytes anolyte catholyte High flow velocity Low voltage drop Short separation path Fast separation Fluidics – divergent flow IEF – electricity control by electrolyte cnductivity k Divergent flow IEF High voltage drop Efficient focusing Membranes IEF 10 27th Nov. 07 soutez 07 55 + - high low k Separated fractions Carriers & analytes anolyte catholyte High flow velocity Low voltage drop Short separation path Fast separation Fluidics – divergent flow IEF – electricity control by electrolyte cnductivity k Simple device : Membranes eliminated by porous layer bed Divergent flow IEF High voltage drop Efficient focusing 27th Nov. 07 soutez 07 56 + - high low k Separated fractions Carriers & analytes anolyte catholyte High flow velocity Low voltage drop Short separation path Fast separation Fluidics – divergent flow IEF – electricity control by electrolyte cnductivity k Simple device : Membranes eliminated by porous layer bed Separation area, flow inputs and outputs made from non-woven fabric Divergent flow IEF High voltage drop Efficient focusing 27th Nov. 07 soutez 07 57 + - high low k Separated fractions Carriers & analytes anolyte catholyte High flow velocity Low voltage drop Short separation path Fast separation Fluidics – divergent flow IEF – electricity control by electrolyte cnductivity k Simple device: Membranes eliminated by porous layer bed Separation area, flow inputs and outputs made from non-woven fabric Electrode contacts made from non-woven fabric Flow generated by hydrostatics Divergent flow IEF High voltage drop Efficient focusing 10/3/2017 IEF 58/7910/3/2017 IEF 58/73 Divergent flow IEF The polypropylene nonwoven web 0.1 mm thick lies on white polyvinylchloride flexible sheet input strips dipped in Petri dishes containing: above left – anolyte above middle - solution of carriers and pI markers above right – catholyte middle left - carbon rod anode middle right – carbon rod cathode output strips - bottom - microplate Streamlines of red pI markers from left pI = 3.3, 4.7, 6.2, 7.6, 11.0 Flow due to hydrostatics and capillary elevation Constant power load 1 W No cooling Šlais K. Electrophoresis 29 2008 2451-2457 10/3/2017 IEF 59/79 10/3/2017 IEF 60/7910/3/2017 IEF 60/73 Dynamics of divergent flow IEF 1 W constant power load switched off at 11 hod 30 min switched on at 11 hod 40 min Flow inputs: Anolyte: 0.05 M H3PO4 , 5.2 mS/cm,1 mL/h Catholyte: 0.05 M NaOH, 11mS/cm, 1 mL/h Carriers and pI markers: 0.75 mS/cm, 4 mL/h, Holdup volume: 1 ml Separation area: 71 cm2 Streamlines of red pI markers from left pI = 3.3, 4.7, 6.2, 7.6, 11.0 Šlais K. Electrophoresis 29 2008 2451-2457 IEF 11 24th Nov. 08 5th CECE 61 time stability 0 50 100 150 200 250 300 0 2 4 6 8 10 12 14 16 time [hours] position[pixels] MO pI 5.2 hemoglobin cytochrom C Streamlines fluctuation 3.96 %, 3.94 %, 1.26 % and 1.88 %, respectively. Šťastná M., Šlais K., Electrophoresis, accepted -00293 Streamlines from left : orange – marker pI 2.6; lavender - marker pI 5.2; brown – hemoglobin, 0.5 mg/ml; brick – cytochrom C, 0.5 mg/ml; flow 0.18 mL/min Performance stability of SI DF IEF 10/3/2017 IEF 62/7910/3/2017 IEF 62/73 Preparative DF IEF of bear Mazanec K., Bobalova J., Slais K. Anal Bioanal Chem 2009, 393, 1769-1778 10/3/2017 IEF 63/79 DF IEF of barley extract, malt and bear Continuously sampled pI markers: orange – marker pI 2.5 pink - marker pI 11 Input- Raw barley extract + buffers + markers pI 2.5 and 11 flow rate - 0.23 ml/ min, conductivity- 1.0 mS/cm Input electrodes 4 mA, 20 V Output electrodes: 6 mA, 800 V 1 drop of pI markers mixture Mazanec K., Bobalova J., Slais K. Anal Bioanal Chem 2009, 393, 1769-1778 3.10.2017 63/79 10/3/2017 IEF 64/79 Combined scan of IEF gel fractions from DF IEF of bear Colored pI markers scanned immediately after gel IEF Proteins scanned after Commassie staining 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 pI 11 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 3 pI 11 MALDI-MS spectra of 20 DF IEF fraction of proteins from raw malt extract.Mazanec K., Bobalova J., Slais K. Anal Bioanal Chem 2009, 393, 1769-1778 3.10.2017 64/79 10/3/2017 IEF 65/79 Preparative divergent flow IEF without carrier ampholytes for separation of complex biological samples DF IEF without carrier ampholytes with yeast lysate sample and colored pI markers.1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 3.7 5.3 6.3 fractions 8.5 11.0 pIs + + - input output 2.6 M S 8 9 10 11 12 13 14 15 16 17 18 19 M Separation of proteins in individual yeast lysate DF IEF fractions by polyacrylamide gel IEF. M. Stastna, K. Slais, Electrophoresis,31, 2010,433-439 Desalting, preconcentration, preseparation 3.10.2017 65/79 10/3/2017 IEF 66/79 Electrolyte system for fast preparative focusing in wide pH range based on bidirectional isotachophoresis (BITP) , L- leading anion of strong acid L+ - leading cation of strong base, C- - anionic counter ions, C+ - cationic counter ions, S- - anionic spacers, S+ - cationic spacers, T- - the fastest C- in LB in anionic ITP part and T+ - the fastest C+ in LA in cationic ITP part. IEF 12 10/3/2017 IEF 67/79 The composition of LB, LA and spacer electrolytes used for simulation and in the experiment verification catholyte pK u x10-9 [m2V-1s-1] Mw simulated conc [mM] conc [mgL- 1] lysine 10.79 -26.4 146.19 7 1023.3 ACA 10.80 -28.8 131.20 10 1312.0 GABA 10.56 -29.0 103.10 10 1031.0 β-alanine 10.24 -30.8 89.10 10 891.0 glycine 9.78 -37.4 75.00 7 525.0 asparagine 9.02 -31.6 130.00 5 650.0 TAPS 8.30 -25.0 243.28 5 1216.4 TAPSO 7.70 -26.0 259.28 5 1296.4 NaOH 13.70 +51.9 40.00 60 2400.0 anolyte glutamic acid 2.16, 4.32 +27.4, +27.6 147.13 5 735.7 β-alanine 3.55 +38.5 89.10 10 891.0 GABA 4.03 +28.8 103.10 10 1031.0 ACA 4.37 +29.8 131.20 10 1312.0 creatinine 4.83, 9.20 +37.0, 37.2 113.10 5 565.5 IDPN 5.29 +30.0 123.20 5 616.0 BisTris 6.40 +26.0 209.20 5 1046.0 HEMorf 6.80 +30.2 131.20 5 656.0 H2SO4 -82.9 98.00 25 2450.0 pK u x10-9 [m2V-1s-1] Mw simulated conc [mM] conc [mgL- 1] spacers MOPS 7.20 -26.9 209.30 3 627.9 ACES 6.70 -31.3 182.20 3 546.6 MES 6.09 -28.0 213.25 3 639.8 picolinic acid 5.30 -29.6 123.11 3 369.3 ammonium acetate 4.76 -42.7,-39.4 77.09 3 231.3 glycolic acid 3.89 -42.4 118.10 3 354.3 phosphoric acid 2.16,7.21,12.67 34.6,61.4,71.5 192.12 3 576.4 imidazol 7.15 +52.0 68.10 3 204.3 EtMorf 7.70 +30.0 115.20 3 345.6 Tris 8.08 +29.5 121.10 3 363.3 morpholine 8.35 +41.3 87.00 3 261.0 ammediol 8.70 +33.5 105.10 3 315.3 aminomethylpropano l 9.60 +30.0 89.14 3 267.4 etylaminoethanol 10.00 +30.0 89.14 3 267.4 piperidin 11.10 +39.8 85.10 3 255.3 10/3/2017 IEF 68/79 Computer simulation of dynamics in newly suggested electrolyte system based on bidirectional ITP 10/3/2017 IEF 69/79 The animation of the experiment with colored indicators subjected to BITP electrofocusing in newly suggested electrolyte system and carried out on nonwoven strip in V-shape trough during 30 min. 10/3/2017 IEF 70/79 0 min 12 min 30 min cathodeanode [cm] loading area XIXVIIIVIIIISPADNSI The examples of representative images displaying bidirectional ITP electrofocusing process in nonwoven strip in V-shape trough with colored pH indicators taken at 0, 12 and 30 minutes. 10/3/2017 IEF 71/79 simulation experiment carried out on linear nonwoven strip in the V-shape trough The electrofocusing dynamics shown as dependence of zone position on analysis time 10/3/2017 IEF 72/79 210 µL/min LC S LA cathode anode X IX VIII VI III SPADNS 210 µL/min LC LA S cathode anode X III SPADNS a b The images of bidirectional ITP electrofocusing with continuous flow in rectangular (a) and trapezoidal (b) separation beds under the same experimental conditions IEF 13 10/3/2017 IEF 73/79 210 µL/min cathode anode LC S LA X SPADNS cytC myo a b LC LA S c The example of bidirectional ITP separation and electrofocusing in continuous flow of cytochrome C (cytC) and myoglobin (myo) B C A anode cathodecontact strips LA LB S input output plastic foil holders anolyte/catholyte drain Šťastná M., Šlais K. Electrophoresis 36 2015 2579-2586 Continuous fast focusing in trapezoidal void channel based on bidirectional isotachophoresis in wide pH range. The separation of colored indicators in instrumentation with a larger void closed channel. anode cathode S LA LB The details of the instrumentation output with collected fractions in twelve well plate. A B C 1 2 3 4 5 6 7 8 9 10 11 12 The separation of two colored indicators and cytochrome C in smaller void channel. anode cathode S LA LB A anode cathode LA LB S B The separation of two colored indicators and myoglobin in smaller void channel. anode cathode LA LB S A cathode LA LB S anode B IEF 14 24th Nov. 08 5th CECE 79 Conclusions Divergent flow isoelectric focusing (DF IEF)  combines • speed and low demand of electricity typical for micro fluidic channels • sample loadability and separation efficiency of preparative devices  has a potential • for further shape and material optimization • for scaling up and down  Single input design (SI DF IEF) simplifies miniature devices  Carriers based on mixtures of simple buffers are cheap and advantageous for further processing of collected fractions  Stability of streamlines is promising for the designs with more collected fractions  Thickness of separation layer can conveniently be adjusted by sandwiching of non woven fabric or glas plate distance 10/3/2017 IEF 80/7980/79