1 1 Trends in analytical chemistry Application of membrane-based pre-separation techniques in analysis of environmental, biological and clinical samples Lecture for students of MU in Brno, 19.10.2017 Pavel Kubáň (kuban@iach.cz) Department of Electromigration Methods Institute of Analytical Chemistry of the Czech Academy of Sciences 2  Complex samples and their pretreatment  Membrane techniques  Electrically induced transfer of ions across membranes  Applications  Coupling to standard analytical instrumentation  Conclusions and future perspective 3 Pretreatment of complex samples PreconcentrationClean-up  Matrix effects  High concentrations of proteins and salts  Deteriorated performance  Analytical system poisoning  Low concentrations of analytes  Analytes not detected  Poor quantitative results 4 Human plasma 1:1, essential amino acids 6543210 migration time (min) 3 mV 1 2 3 5 Standard methods for pretreatment of complex samples Liquid-liquid extraction (LLE) Solid phase extraction (SPE)   Automation (SPE) High consumption of organic solvents and complex samples Time consuming Costly Additional instrumental equipment 6 Membrane techniques for pretreatment of complex samples Dialysis (MWCO membranes, hollow fibers) 2 7 Ultrafiltration (flat sheet membranes, hollow fibers) 8 Supported liquid membrane (SLM) Support – porous PP, PTFE (thickness 25 – 300 µm) 9 Liquid phase microextraction membranedonor acceptor A M A+ M membranedonor acceptor A+ M+ A+ M+ Diffusion Electric potential Phase interfaces – membranes 10 Electric potential in sample treatment  Short extraction times  High extraction efficiencies  High selectivity  Simple instrumentation  Membrane selection  Electrode reactions  High electric current collapse of system ? ? ! 11 Electromembrane extraction – EME  LLE large volumes of organic solvents  1996 – LPME (µL volumes of organics) Liu and Dasgupta, Anal. Chem. 68 (1996) 1817-1821 Jeannot and Cantwell, Anal. Chem. 68 (1996) 2236-2240  Stability of organic phase  1999 – HF-LPME (inert porous polypropylene hollow fibre) Pedersen-Bjergaard and Rasmussen, Anal. Chem. 71 (1999) 2650-2656  Long extraction times  2006 – EME (short extraction times due to use of DC voltage) Pedersen-Bjergaard and Rasmussen, J. Chromatogr. A 1109 (2006) 183-190 ! ! ! 12 + + analytes matrix  Hollow fiber impregnated with organic solvent (~ 10 L) – SLM  Cheap disposable extraction units (< 10 h/cm), no carry-over  DC voltage source (0 – 400 V)  Donor (~ mL) and acceptor (~ 20 L) are aqueous ++ acceptor sample 1 – 2 mm 200 – 300 m Hollow fiber: total length: 2 – 5 cm Pedersen-Bjergaard and Rasmussen, J. Chromatogr. A 1109 (2006) 183 Electromembrane extraction – EME 3 13 Parameters affecting EME  Composition of liquid membrane  pH a composition of acceptor and donor  Electric potential / current  Extraction time  Stirring/agitation 14 EME of basic drugs – model example  SLM – NPOE  Acceptor – 10 mM HCl  Donor – drugs in 10 mM HCl  Extraction time – 5 min at 300 V 1 µg/mL Pedersen-Bjergaard and Rasmussen J. Chromatogr. A 1109 (2006) 183 15 16 1 µg/mL 17 Comparison of LPME and EME of basic drugs Gjelstad et al. J.Chromatogr. A 1157 (2007) 38 18 EME in portable format – use of 9 V battery  SLM – ENB  Acceptor – 10 mM HCl  Donor – plasma, blood, urine in 10 mM HCl  Extraction time – 5 min at 9 V Eibak et al. J. Chromatogr. A 1217 (2010) 5050 4 19 Drop-to-drop EME  SLM – NPOE  Acceptor – 10 mM HCl  Donor – plasma, urine in 10 mM HCl  Extraction time – 5 min at 15 V Petersen et al. J. Chromatogr. A 1216 (2009) 1496 A – spiked urine no EME B – spiked urine after EME 20 Microchip EME Petersen et al. Microfluid Nanofluid 9 (2010) 881 a) PMMA – top cover b) PP membrane c) 50 µm channel d) PMMA – base plate 21 Microchip EME  SLM – NPOE  Acceptor – 10 mM HCl  Donor – urine in 10 mM HCl  Extraction time – 10 min at 15 V  FR donor = 3 µL/min A – raw urine B – urine spiked with drugs C – urine spiked with drugs + EME 22 EME at constant electric current 1. Faraday’s law m = A – electrochemical equivalent 2. Faraday’s law A = zF Mm  tIA  F = 96485 C mol-1 z – charge number n = zF tI   R U I =Ohm’s law  Poor repeatability of EME (RSD up to 30%) 23 EME of basic drugs Constant U (5 V) Constant i (4 µA)  SLM – ENB  Acceptor – 10 mM HCl  Donor – STD, urine in 10 mM HCl  Extraction time – 5 min CE-UV in 15 mM phosphate buffer (pH 2.9) 4.03.53.02.52.01.5 migration time (min) 10 mAU RSD = 3 – 8% 0 1 2 3 4 5 6 0 1 2 3 4 5 extraction time (min) current(A) 1 2 3 4 5 4.03.53.02.52.0 migration time (min) 10 mAU RSD = 7 – 15%nortriptyline haloperidol loperamide 24 RSD = 6 – 12% RSD = 3 – 7% Constant i (4 µA) Constant U (5 V) EME of spiked urine at constant electric current  Improved repeatability  Similar performance for other analytical parameters Linearity LOD  Supplies operating at constant electric current are not cheap 4.03.53.02.52.01.5 migration time (min) 10 mAU nortriptyline haloperidol loperamide Šlampová et al. J. Chromatogr. A 1234 (2012) 32 ! 5 25 Pulsed EME Rezazadeh et al. J. Chromatogr. A 1262 (2012) 214 26 phenolphthalein, colorless  pink at pH 8 – 10 0 s – 0 mC 60 s – 0.19 mC 120 s – 0.59 mC 180 s – 0.87 mC 240 s – 1.00 mC 300 s – 1.05 mC 0 s – 0 mC 15 s – 0.07 mC 30 s – 0.18 mC 45 s – 0.39 mC 60 s – 0.50 mC 90 s – 0.54 mC 120 s – 0.56 mC 180 s – 0.57 mC 0 s – 0 mC 30 s – 0.04 mC 60 s – 0.07 mC 120 s – 0.12 mC 180 s – 0.17 mC 300 s – 0.30 mC 360 s – 0.38 mC 420 s – 0.48 mC in DI water in 1 mM HCl in 50 mM HAc Q, F, Vd/a ~ 7 mM (H+/OH–) Q, F, Vd/a ~ 4 mM (H+/OH–) Q, F, Vd/a ~ 3 mM (H+/OH–) EME and electrolysis Kubáň J. Chromatogr. A 1398 (2015) 11 27 12 10 8 6 4 2 0 pHvalue 4035302520151050 extraction time (min) donor solution acceptor solution 80 60 40 20 0 extractionrecovery(%) 4035302520151050 extraction time (min) procaine nortriptyline papaverine 4 3 2 1 0 pHvalue 4035302520151050 extraction time (min) donor solution acceptor solution Šlampová et al. Anal. Chim. Acta 887 (2015) 92 Non-optimized acceptor 1 mM HCl Optimized acceptor 500 mM formic acid pKa ~ 9 pKa ~ 6 80 60 40 20 0 extractionrecovery(%) 4035302520151050 extraction time (min) procaine nortriptyline papaverine 28 Selected applications of EME in analysis of biological, environmental and other complex samples 29 EME of drugs used for treatment of alcohol and opiates abuse in biological fluids Rezazadeh et al. J.Chromatogr. B 879 (2011) 1143 30  SLM –NPOE/DEHP  Acceptor – 100 mM HCl  Donor – plasma and urine in 10 mM HCl  Extraction time – 20 min at 100 V 6 31 EME of peptides in biological fluids  SLM – 1-octanol/DEHP  Acceptor – 0.1 M HCl  Donor – plasma in 0.1 M HCl  Extraction time – 5 min at 50 V Balchen et al. J.Chromatogr. A 1194 (2008) 143 A – STD at 300 V B – STD at 0 V 32 EME of amphetamines in biological fluids  SLM – NPOE/TEHP  Acceptor – 100 mM HCl  Donor – urine in 1 mM HCl  Extraction time – 7 min at 250 V Seidi et al. J. Chromatogr. A 1218 (2011) 3958 A – urine spiked with amphetamines B – urine of amphetamine user 33 EME of decomposition products of nerve agents in environmental samples Xu et al. J. Chromatogr. A 1214 (2008) 17  SLM – 1-octanol  Acceptor – DI water  Donor – samples in DI water  Extraction time – 30 min at 300 V  Real samples – environmental waters (a) – STD (b) – river water spiked with phosphonic acids 34 EME of heavy metals in water samples and food supplements 5.04.54.03.53.0 migration time (min) 2 mV Mg2+ Mn2+ Cd2+ Zn2+ Pb2+ Co2+ Cu2+ Ni2+ 1 M HMs after EME Kubáň et al. Electrophoresis 32 (2011) 1025  SLM – 1-octanol/DEHP  Acceptor – 100 mM HAc  Donor – samples in DI  Extraction time – 5 min at 75 V  Real samples – tap water, infant food supplements 35 EME and CE-C4D of zinc 3.53.02.52.01.5 migration time (min) 5 mV a b c Ca2+/Na+/Mg2+ Zn2+ 3.53.02.52.01.5 migration time (min) 2 mV Ca2+/Na+/Mg2+ K+ Zn2+ b a + 2 M Zn2+ MP 1:50 + 10 M Zn2+ + 5 M Zn2+ TW Tap water Milk powder 36  Endogenous concentrations ~ 100 M  Metabolic disorders concentration (MSUD ~ 500 M) (PKU ~ 350 – 1500 M) EME of amino acids in biological fluids  SLM – ENB/DEHP  Acceptor – 2.5 M HAc  Donor – serum, plasma, blood, urine in 2.5 M HAc  Extraction time – 10 min at 50 V 7 37 1210864 migration time (min) 0.3 mV 12 34 5 6 7 8 9 10 11 12serum MSUD – branched amino acids (Val, Leu, Ile) 1210864 migration time (min) 0.5 mV 12 34 5 6 7 8 9 10 11 12blood PKU – phenylalanine (Phe) CE-C4D in 2.5 M HAc Strieglerová et al. J. Chromatogr. A 1218 (2011) 6248 EME of amino acids in biological fluids 38 EME summary • Clean-up and preconcentration in one step • ~ 10 L of organic solvent/analysis • Disposable extraction units • Short extraction times • High selectivity of SLM • Suitable for biological samples • SLM selection • EME parameters ! ! 39 Coupling of membrane extraction techniques with state-of-the-art analytical instrumentation Extraction and subsequent analysis off-line 40 1. On-line coupling of SLM to HPLC Lindegard et al. Anal. Chem. 66 (1994) 4490 Acceptor channel volume ~ 10 µL 41 Determination of basic drugs in plasma I – Amperozide II –Amperozide metabolite III – unknown compound 42 2. On-line coupling of SLM to GC Shen et al. Anal. Chem. 70 (1998) 946 8 43 Palmarsdottir et al. Anal. Chem. 69 (1997) 1732 (a) – STD (b) – plasma A – IS B – bambuterol 3. On-line coupling of SLM to CE 44 4. On-line coupling of ED to CE Buscher et al. J. Chromatogr. A 788 (1997) 165 45 On-line coupling of ED to CE – inositol triphosphates analysis A – without ED B – with ED 46 5. On-line microchip EME  SLM – 0.2 µL NPOE  Acceptor – 100 mM HCOOH  Donor – urine in 10 mM HCl  Extraction time – 10 min at 15 V  FR donor = 9 µL/min  FR acceptor = 0 – 3 µL/min Petersen et al. Anal. Chem. (2011) 44 47 On-line monitoring of amitriptyline metabolism 48 Nozal et al. Electrophoresis 27 (2006) 3075 6. On-line coupling of SLM to commercial CE – Beckman 9 49 Determination of nitroimidazoles in liver 1 – metronidazole 2 – ronidazole 3 – dimetridazole A – sample B – spiked sample 50 4.44.24.03.83.63.4 migration time (min) 0.2 mV Chol Crea Orn Lys Arg His serum plasma C4D C Pt Pt h HV 6.05.04.03.0 migration time (min) 3 mV serum breast milk SCN- ClO4 Kubáň et al. Electrophoresis 33 (2012) 2695 Applications Extraction ~ 0 – 10 min 7. In-line coupling of disposable SLM to lab-made CE Kubáň and Boček J. Chromatogr. A 1234 (2012) 2 51 Electrode Capillary Sample vial Compression spring Donor SLM Acceptor  SLM ~ 5 µL of organic solvent  Sample volume – 10 – 40 µL  Disposable extraction devices !!! Acceptor Donor SLM Extraction Injection 8. In-line coupling of disposable SLM devices to commercial CE 52 30 20 10 0 mAU 1.61.41.21.00.80.60.4 migration time (min) 10 mM 1 mM blank Undiluted serum – healthy individual formate LOD: 30 µM undiluted serum, 35 µM undiluted whole blood Endogenous concentrations: 0 – 0.4 mM Methanol poisoning: 1 – 40 mM  10 mM serious health consequences Formate in human serum and whole blood chloride 20 mM 80 60 40 20 0 mAU 1.61.41.21.00.80.60.4 migration time (min) formate chloride Undiluted serum– patient after methanol intoxication 10.4 ± 0.4 mM Pantůčková et al. J. Chromatogr. A 1299 (2013) 33 Total analysis time: ~ 4 min!!!  Support: PP foil (100 µm)  SLM: 10 µL MeOH  Donor: undiluted serum, whole blood  Acceptor: DI water  Volume: 10 µL  Extraction time: 60 s !!! 53 Polymer inclusion membranes (PIMs) Base polymer – Cellulose triacetate (CTA) Plasticizer – 2-nitrophenyloctyl ether Ion carrier – Aliquat 336 PIM – dry, homogenous, non-porous 500 nm Resulting PIM: 60% (w/w) CTA 40% (w/w) Aliquat 336 Dissolve in dichloromethane and evaporate Schow et al. J. Membr. Sci. 111 (1996) 54 Formate in whole blood after methanol poisoning PIM extraction Coupling to CE CE-C4D analysis of raw blood 2.52.01.51.00.5 migration time (min) 13 mV fresh PIM 30 days old PIM 90 days old PIM formate chloride Long-term performance of PIM Pre-assembled disposable units for clinical applications? Pantůčková et al. Anal. Chim. Acta 887 (2015) 111 Total time ~ 7 min 10 55 10. Free liquid membranes (FLMs) OD1.6mm ID1.0mm donor FLM acceptor Total length 20 mm donor FLM acceptor PFA tubing  Extraction units – PFA, PTFE, PP tubing (ID 0.5 – 1.0 mm)  Minimum consumption of solvents/samples (350 nL – 1.5 µL/extraction)  Cheap, disposable extraction units (~ 1 kč/cm), no sample carry-over  Stable and precisely defined phase interfaces 56 µ-EME across FLM 0 s 60 s 120 s 180 s 240 s 300 s 0 s 5 s 15 s 30 s 60 s 120 s 300 s Anions Cations  FLM: 1.5 µL 1-pentanol  Donor: SPADNS or crystal violet  Acceptor: DI water  Volume: 1.5 µL  Extraction voltage: 100 V  Extraction time: 5 min + GND GND - 57 µ-EME across FLM µ-EME principle EME fundamentals Donor: SPADNS3- in DI water Acceptor: DI water FLM: 1-pentanol Voltage: 100 V Time: 3 min Volumes: 1.5 µL Donor: phenolphthalein in 1 mM HCl Acceptor: DI water FLM: 1-pentanol Voltage: 100 V Time: 3 min Volumes: 1.5 µL 58 12 10 8 6 4 2 0 electriccurrent(A) 300250200150100500 extraction time (s) µ 1 mM SPADNS 100 µM SPADNS 10 µM SPADNS DI water 12 10 8 6 4 2 0 electriccurrent(A) 300250200150100500 extraction time (s) µ 1 mM crystal violet 100 µM crystal violet 10 µM crystal violet DI water µ-EME process – electric currents monitoring 59 20 15 10 5 0 UVabsorbance(mAU) 3.02.52.01.51.00.50.0 migration time (min) Standard Urine Serum ceatinine nortriptyline haloperidol loperamide µ-EME of basic drugs across FLM  FLM: 1.5 µL ENB  Donor: urine and serum + 20 μg/mL drugs  Acceptor: 10 mM HCl  Volumes: 1.5 µL  Voltage: 100 V  Time: 5 min 60 CONCLUSIONS AND PERSPECTIVES  Membrane extraction techniques are green, cheap, fast and efficient  Electric potential is suitable for pretreatment of complex samples  Resulting acceptors are compatible with standard analytical instruments  On-line and in-line coupling to analytical instrumentation is very attractive Ph.D. positions available