Osnova 3. přednášky • Diagnostické metody • Analytické metody • Kvasinkové modelové organismy Určení (nových) kmenů v nových lokalitách Určení kmene v klinických izolátech (odlišení patogenních kmenů Candida…) Kontrola čistoty kmene pro biotechnologické procesy (Saccharomyces cerevisiae – pivo) zpracování vzorků: z půdy: promývání v destilované vodě → homogenizace → třepačka … klinické vzorky: tělní tekutiny, stěr nebo pomocí lepivé pásky … a pak vysetí na Sabouraudův agar nebo jiné bohaté médium → kultivace 2-7 dní při teplotách 22-42°C (37°C) identifikace/analýza: - fenotypové metody – morfologie kolonií, morfologie buněk (…spor) - biochemické vlastnosti (fermentace cukrů, asimilace uhlíkatých nebo dusíkatých substrátů … růst na chromogenních plotnách) moderní metody - PCR (nested, multiplex, RFLP), - sekvenační (NGS technologie), - hmotnostní spektrometrie Lékařská mykologie – Bi3390 V klinické praxi je důležitější rychlost než přesnost (při zachování správné léčby) http://zdravi.e15.cz/clanek/postgradualni-medicina-priloha/identifikace-kvasinek-z-klinickeho-materialu-prehled-soucasnych- moznosti-se-zamerenim-na-fenotypove-metody-a-komercni-produkty-455847 http://zdravi.e15.cz/clanek/postgradualni-medicina-priloha/identifikace-kvasinek-z-klinickeho-materialu-prehled-soucasnychmoznosti-se-zamerenim-na-fenotypove-metody-a-komercni-produkty-455847 doc. P. Hamal, UP Olomouc Postup klinického vyšetření Campanhaetal.,2005,OralDIseases Fenotypové metody C. dubliniensis: nadbytek chlamydospor na koncích krátkých pseudohyf C. albicans: na delších hyfách či pseudohyfách jen jedna terminální chlamydospora - test klíčních hyf, C. albicans přímo z pozitivních hemokultur na kaseinový agar nebo kukuřičný agar Mikromorfologie - Kolonie Staibův agar (37°C) C. dubliniensis C.albicans - souprava Iatron Serological Candida Check Kit (Iatron Laboratories) nebo Bichro-latex Albicans (Fumouze Diagnostics) Sérologické testy Latexová aglutinace C. dubliniensis C. albicans Teplotní test Totéž platí pro kvasinky Specifické protilátky proti antigenům buněčné stěny (omezené …) Chromogenní testy test enzymových aktivit - chromogení substráty – např. tetrazoliové soli „Zlatý standard“ – půda vyvinutá Rambachem - CHROMagar Candida (CHROMagar Microbiology, v ČR Colorex Candida od Trios) Caal Catr Cacr Cagl http://zdravi.e15.cz/clanek/postgradualni-medicina-priloha/identifikace-kvasinek-z-klinickeho-materialu-prehled-soucasnych- moznosti-se-zamerenim-na-fenotypove-metody-a-komercni-produkty-455847 Výše uvedené metody se používají běžně v klinických laboratořích Jsou k dispozici kompletní sady souprav Chromogenní testy * ** * * Candida, Saccharomyces, Rhodotorula, Cryptococcus, Trichosporon, Geotrichum, Kloeckera, Pichia Příklad analýzy: CANDIchrom – chromogenni metoda (enzymatická přeměna tetrazoliové soli) 1-2 dny *ELITex – latexové aglutinační metody (protilátky) 5 minut *ELIchrom – biochemický test (aktivita trehalasy) 20 minut ELIchromFUNGI – biochemické testy 1-2 dny Biochemické testy - Biochemické parametry – založeny na schopnosti utilizace uhlíkatých látek (cukrů), utilizace dusíkatých látek (hydrolýza močoviny - ureasa) - Tato schopnost se odvíjí od metabolických schopností daného druhu – přítomnosti specifických enzymů (především fosfatázy, β-glukosidáza, β-N-acetylhexosaminidázy) (např. C. dubliniensis není schopna utilizovat D-xylózu, D-trehalózu, methyl-α-D-glukosid –chybí β-D-glukosidázová aktivita; C. albicans není schopna utilizovat glycerol) Biochemická charakteristika • Rhodotorula • Ureáza + • KNO3 utilizace • Fermentace – Mal, Lac, Sac, Glc – • Asimilace sacharidů – Mal+ Sac+ Lac– Raf+ Mlz+ – Xyl+ Ara+ – Inl- Aml– Cel+ Tre+ • Sporidiobolus • Ureáza + • KNO3 utilizace – • Fermentace – Mal, Lac, Sac, Glc – • Asimilace sacharidů – Mal- Sac+ Lac+ – Raf+ Mlz+ – Xyl+ Ara– Inl- Aml+ – Cel+ Tre+ Je možné určit až 267 druhů kvasinek z 53 rodů (ale pouze 50% spolehlivost) tetrazoliová sůl nárust kvasinek Molekulární taxonomie -konvenční taxonomie je problematická : - morfologie kvasinek není stabilní→ roztěr a nárůst trvá několik dní (prodlužuje se včasná diagnóza …) - Většinu fyziologických, enzymatických … charakteristik lze zvrátit mutací (v jediném genu) molekulární taxonomie (komerční účely - odlišit kmeny S.c.) - pulsní gelová elektroforéza (PFGE), FISH (karyotyp) - PCR, restrikční polymorfismus (odlišení druhů) - nejnověji MALDI-TOF (taxonomie) - obtížná izolace DNA, proteinů … z kvasinek - je třeba nejdříve narušit silnou buněčnou stěnu … pomocí enzymů nebo mechanicky - poté PFGE nebo dále extrahovat DNA (např. fenol-chloroform, poté srážení etanolem) - specifické sekvence lze identifikovat pomocí Southern blotu nebo PCR - izolace DNA a štěpení restrikční endonukleázou -> agarozový gel -> přesátí na membránu -> sonda značená digoxigeninem (většinou se využívá sekvencí rDNA) Identifikace založená na odlišnosti typických sekvencí DNA • 1. sada primerů je universální kvasinková (pozitivní kontrola, vyšší proužky) a 2. sada primerů je druhově specifická (méně konzervovaný úsek DNA) separace gelovou elektroforézou (barvení ethidium bromidem, UV transiluminátor) • po PCR může následovat štěpení restrikční endonukleasou a odlišení druhů na základě odlišné délky štěpných produktů (tzv. RFLP – restriction fragment length polymorfism) x xx Nested („zahnízděná“) PCR • amplifikace probíhá dvoufázově • v 1. fázi je pomocí jedné sady primerů (kvasinková) namnožena delší sekvence nukleové kyseliny • takto získané amplikony jsou pak přeneseny do jiné amplifikační zkumavky obsahující druhou dvojici primerů (druhová), specifických k vnitřní oblasti úseku amplikonů • konzervovaná intergenová oblast rDNA • detekce gelovou elektroforézou • eventuálně sekvenace • 2 sady primerů, intergenová oblast rDNA Romeo et al., J. Microbiol Met 79 (2009) univerzální primer (konzervativní oblast 5.8S rDNA) Candida glabrata 397bp Candida nivariensis 293bp Candida bracarensis 223bp Multiplex PCR • amplifikace se směsí primerů (jeden univerzální, druhý specifický) Klasická elektroforéza dokáže rozlišit fragmenty pouze do velikosti 40-50kb (větší molekuly se pohybují stejnou rychlostí nezávisle na velikosti) PFGE = pulse field gel electrophoresis (elektroforéza s měnícím se elektrickým polem, při změně směru elektrického pole trvá větším molekulám DNA déle, než se přeorientují - umožňuje separovat molekuly velké několik Mb ) • contoured clamped homogeneous electric field (CHEF) • gel obsahuje vzorky DNA uvnitř agarózových bločků (minimalizace náhodných zlomů velkých molekul DNA) PFGE Karyotypizace • S.c. kmeny mají podobný karyotyp – většinou se liší délkou chromosomu XII (podle počtu rDNA genů) • Průmyslové kvasinky jsou většinou polyploidní – homologní chromosomy mají odlišné velikosti • Srovnání kmenů pro fylogenetické účely (intaktní nebo RE naštěpené chromosomy) • Určení příbuznosti izolátů jednoho druhu pro epidemiologické účely např. kmeny z různých míst od jednoho pacienta, kmeny od 2 různých pacientů, kmeny od zdravotního personálu a pacientů 22 (A) Nekompletní naštěpení RE (B) Degradace nukleázy (C) Oprava přidáním 75 mM thiourey do pufru • hmotnostní spektrometrie s laserovou desorpcí a ionizací za účasti matrice s průletovým analyzátorem (matrix-assisted laser desorption/ionization time-of-flight mass spectrometry– MALDI-TOF) • Umožňuje odpaření a ionizaci netěkavých biologických vzorků z pevné fáze přímo do plynné • Vzorek je smíchán s tzv. matricí, směs se nanese na speciální kovovou destičku a nechá zaschnout • Destička se vloží do iontového zdroje a ve vakuu je ozářena pulsním laserem (UV) • Energii laserového pulsu absorbuje matrice a předá ji molekulám analytu – odpaří se • ion vstupuje do vakua v trubici detektoru - z jeho pohybu vakuovaným prostorem lze vypočítat poměr jeho hmotnosti a náboje (z doby letu částice) MALDI-TOF • Charakter spektra závisí na krystalizaci a ionizačních vlastnostech vzorku výška píku je rovna relativní koncentraci proteinu v místě ionizace • Při srovnávání spekter druhů uvnitř rodu se hledají rodově charakteristické signály píků • Identifikace na úroveň kmenů možná díky detekci charakteristických proteinů a peptidů Qian a spol, Anal Bioanal Chem, 2008 MALDI-TOF Konecna a spol, JAFC, 2012 Proteiny v pivu Stříbrem barvený 2D gel Picotti et al., Nature, 2013 Vygenerování referenční „mass-spectrometric“ mapy pro kvasinkový proteom Tak jako se sekvenoval kvasinkový genom (první eukar.), tak se „sekvenuje“ proteom – slouží ke sledování exprese/přítomnosti proteinů v kvasinkové buňce za různých podmínek/situací (např. změny proteomu v průběhu buněčného cyklu, změny metabolismu na různých substrátech) MALDI-TOF Studie populací S. cerevisiae a S. paradoxus • Sekvenace (+ hybridizace na čipech) > 100 kmenů z různých koutů světa (především vinné kmeny) • S. paradoxus – linie izolované podle lokalit • S.cerevisiae - 3-4 původní linie, které se díky člověku křížily … • ukazují na geografickou závislost Nature 458, (2009), p337 Studie populací S. cerevisiae • NGS sekvenace > 100 kmenů z různých koutů světa a různých biotechnologie • (SNPs) ukazují na geografickou závislost Gallone et al, Cell, 2016 pivní linie ve VB, US, Belgii … a další linie č.2 sake v Asii (i bioetanol v Číně) mixed - specifické silné belgické ales (refermentace v lahvích) - chleba Gallone et al, Cell, 2016 spirits – netvoří jednu linii (nepoužívají se opakovaně – není selektivní tlak – moderní technologie) S. paradoxus outgroup americké pivo má kořeny v Británii •pivo 1 a 2 - nové pivní linie (evolučně izolované –– 2 domestikační události - linie 2 domestikace s vinnými kmeny) Mosaikové kmeny analýza genomu a fenomu: průmyslově-specifická selekce na toleranci ke stresu (vyšší obsah etanolu 7-15%), využití cukru, specifické aroma, nižší schopnost reprodukce „očkováním“ předchozích pivních kultur do nových kvasných procesů (ztráta kontaktu s přirodním prostředím - ~75 000 generací) – např. ztráta schopnosti sporulovat (stále bohaté médium), rychlejší evoluce … nebo naopak zvýšení resistence vůči sulfátům (přidávaným kvůli konzervaci) mutace a duplikace v MAL genech – zlepšení schopnosti utilizace maltosy - nonsense mutace PAD1 a FDC1 (snížení produkce 4-vinyl guaiacolu odpovídajícího za nepříjemné aroma piva) … Gallone et al, Cell, 2016 vznik klášterních pivovarů „technologie“ piva ~3000 BC nejvíce amplifikací v MAL genech (IMA2, IMA3, MAL31, MAL33, MAL32) u pivních kvasinek (rostou na maltose), zatímco ve vinných kmenech došlo k mnoha delecím těchto genů (ve vinném moštu maltosa není) – obecně více delecí než amplifikací (v genomech analyzovaných kvasinek) Gallone et al, Cell, 2016 analýza genomu hierarchické členění výsledků analýzy fenotypu (fenomu) – určitá korelace s genomem … - pivní linie (beer1) nejsou příliš odolné vůči stresu (nejsou mu vystaveny v pivovarech), zatímco vinné kvasinky jsou velice odolné (kvasné prostředí je bohaté na cukry a vyšší koncentrace alkoholu – hladina cukrů se v různých sezónách liší … mimo sezonu přežívají v „přírodním“ prostředí – musí být adaptabilnější než pivní) Gallone et al, Cell, 2016 analýza fenomu víno pivo Gallone et al, Cell, 2016 - divoké typy chrání před rostlinnými toxiny - při pečení cheba jsou tyto látky zničeny - pivní kmeny - nonsense mutace PAD1 a FDC1 (snížení produkce 4-vinyl guaiacolu odpovídajícího za nežádoucí aroma piva) - křížily pivní kmen schopný produkce 4-vinyl guaiacolu s kmenem pro výrobu saké (vysoká produkce alkoholu) - pivní produkt se specifickým aroma a vysokým obsahem alkoholu • Techniky barvení – FISH – lokalizace spec. sondy – DNA/jádro – DAPI – aktinový – phaloidin – buněčná stěna – calcofluor – Endocytóza ->vakuoly – FM4-64 – Mitochondrie, ER - DiOC6 (3,3′-dihexyloxacarbocyanine iodide) – proteiny tagované GFP (in vivo) … metody studia – fluorescenční … Matsuyama et al.: Nature Biotech, 2006 Určení lokalizace Chong et al., Cell, 2015 Koh et al., G3, 2015 http://cyclops.ccbr.utoronto.ca/ Elektronová mikroskopie - studium buněčné stěny … organel (sekrece …) více prof. Svoboda - šipky ukazují na jaderné póry - vzorek „prosáknut“ epoxypryskyřicí a osmiem - „focused-ion beam scanning“ po 3nm TEM FIB - SEM Wei, et al., BioTechniques, 2012 ER mitochondrie jádro cytoplasmatická membrána s invaginacemi http://www.biotechniques.com/multimedia/archive/00182/Cyzmmek_Supplementa_182027a.mpg Wei, et al., BioTechniques, 2012 Saccharomyces cerevisiae - oválné, množí se pučením – >diploidní i haploidní buňky - (rostou) většinou v G1 fázi (zatímco pombe je v G2 fázi) -Genom 12 Mbp na 16-ti chromosomech -Krátké centromery a ARS (100bp) -Kóduje cca 6 275 genů (5 800 je funkčních) -120 kopii rRNA, 262 tRNA -Geny reprezentují 75% celkové sekvence (kompaktní) -<5% genů obsahuje introny (0.5% genomu), 3% transposony (46% u člověka) Schizosaccharomyces pombe -podlouhlé, množí se dělením - většinou haploidní buňky -má blíž k vyšším eukaryotům (metazoa) -pouze 3 kondenzované chromozomy (13 Mbp) -velké repetitivní centromery (40-100kb) a 1kb počátky replikace -tvorba spindlu až v mitóze -asi 4800 kodujících genů (nejmeně u eukaryot) -z nichž 43% má introny -má geny pro heterochromatin, RNA interferenci (S.c. nemá) -50 genů má homologie s geny lidských nemocí Výhody kvasinkového modelu • Rychle se množící EUKARYOTNÍ mikroorganismy (90 min/dělení, 25-30°C) • Vytváří kolonie na plotnách - mikrobiologické metody (otiskování ploten, kapkovací test => toxiny v plotnách – HU, MMS …) • Stabilní haploidní i diploidní formy • Haploidní buňky lze křížit na diploidní (heterozygotní mutanty) • Diploidní buňky lze sporulovat a využít pro genetickou analýzu (tetrádová analýza) • Lze transformovat DNA (plasmidy i linearní) • Centromerické a multicopy plasmidy • Vysoká frekvence homologní rekombinace (lineární DNA) • Lze připravovat deleční a mutantní kmeny • Vydrží v >15% glycerolu na -70°C „indefinitely“ • Techniky barvení (např. aktinový cytoskelet = phaloidin, buněčná stěna = calcofluor ... + GFP in vivo) • Techniky synchronizace buněk • S.c. má kompaktní genom – knihovny s genomovou DNA (ne cDNA) • Kompletně osekvenovaný genom (genomové aplikace) • EuroFan projekt – delece všech S.c. genů (+GFP, +2-hybrid) • Mikročipy - expresní profily za různých podmínek • 6. FP – „3D Repertoire“ konsorcium (http://www.3drepertoire.org) -strukturu všech 800 komplexů S. cerevisiae • Řada životních dějů má analogii v procesech v savčích buňkách (lidské geny testovány v kvasinkách - nemoci, metabolismus, regulační mechanismy)