ALD Precursors, Precursor Design, Chemistry and Mechanisms

D. J. H. Emslie **ALD/ALE Tutorial, Denver, Colorado** July 15, 2017

Emslie Group in June 2017, McMaster Univ., Hamilton, ON, Canada

OUTLINE 2

- ALD versus CVD from Chemistry and Film-Deposition Perspectives
- Overview H_2O , H_2S , NH₃, O₂/O₃, H₂, H₂/NH₃ etc.
- Precursor design stability, volatility, m.p., reactivity, evaluation
- Unique Examples of Element ALD:
	- Introduction to Cu ALD
	- Cu ALD using ZnEt₂ as the co-reactant (inc. solution studies)
	- Early Transition Metal ALD
		- $WF_6 + Si_2H_6$ (vs TaF₅)
		- TiCl_a + 1,4-disilyl-substituted 2,5-cyclohexadiene or 1,4-dihydropyrazine co-reagents
		- $ML_2 + BH_3(NHMe_2)$ [M = Cr, and possibly Mn]
		- MnR₂ + H₂ (organometallic precursors)
- Summary / Conclusions

CVD vs ALD from different perspectives ³

Thin Film Deposition Perspective:

CVD and p-CVD are similar in that they *do not allow for self-limiting growth or highly conformal and uniform deposition (not to the extent possible with ALD)*

ALD is distinct in that it achieves *self-limiting growth and more conformal and uniform deposition*

ALD OVERVIEW – ACCESS TO DIFFERENT MATERIALS

Co-reactants typically determine the type of thin film deposited (oxide, nitride etc). Precursors are designed to exhibit the desired reactivity with a particular co-reactant. Many Common precursors are halide, alkyl, Cp, amido, alkoxide, aminoalkoxide, acac, b-diketiminate, amidinate complexes.

WHY NEW ALD PRECURSORS AND REACTIVITIES ?

PRECURSOR DESIGN CONSIDERATIONS

Thermal ALD of Copper

Cu^{II} precursors with:

- H₂ (\geq 150 °C)
- ROH (300 ^oC)
- HCO₂H, then N_2H_4 (100-170 °C)
- BH₃(NHMe₂) (130-160 °C)

Cu^I precursors with:

- Zn metal (>400 °C; impure films)
- H₂O, then H₂ (375-475 °C).

The above methods require the use of anhydrous hydrazine or operate at temperatures ≥ 130 °C, and in the case of very thin films, this can lead to agglomeration.

At outset of our work in this area, we asked:

Can ZnEt² be used as a co-reactant for Cu ALD (by introducing Et groups onto Cu, resulting in unstable Cu alkyl species) ?

Methods for Thermal Cu ALD: Emslie, D. J. H.; Chadha P.; J. S. Price, Metal ALD and pulsed-CVD: Fundamental reactions and links with solution chemistry, *Coord. Chem. Rev.*, **2013**, *257*, 3282-3296.

> Knisley, T. J.; Kalutarage, L. C.; Winter, C. H., Precursors and chemistry for the ALD of metallic first row transition metal films, *Coord. Chem. Rev.*, **2013**, *257*, 3222-3231.

Kalutarage, L. C.; Clendenning, S. B.; Winter, C. H., Low-Temperature Atomic Layer Deposition of Copper Films Using Borane Dimethylamine as the Reducing Co-reagent, *Chem. Mater.* **2014**, *26*, 3731−3738.

PROPOSED REACTION SCHEME

Screening Reactions – A Typical Reaction

Various simple **Order of Reactivity From Solution** complexes Screening:

> $ZnEt_2$ > Δ IMe_c $>$ with the potential to the potential to generate copper **BEt³ AlMe³** >>

Screening Reactions – A Typical Reaction

<u>[Cu(PyrIm^{Et})₂] with **ZnEt₂ at 130 °C**</u>

Deposition on SiO² 1500 x [6s DEZ / 7s P / 9s CuL₂ / 7s P] Appearance: Metallic Cu Cu Film thickness \sim 470Å GPC ~0.31 Å/cycle Rs: 6.5 Ω /sq; ρ~ 31 μΩ•cm

Not Self Limiting \rightarrow pulsed-CVD

B. Vidjayacoumar, D. J. H. Emslie, S. B. Clendenning and J. M. Blackwell *et al. Chem. Mater.*, **2010**, *22*, 4844-4853.

• Zinc incorporation results from **Zn CVD**, which is significant at > 100 or σ which is significant at **> 100 ^oC**

Deposition on SiO₂ 1500 x [6s DEZ / 7s P / 9s CuL₂ / 7s P] Appearance: Metallic Cu Cu Film thickness \sim 470Å GPC ~0.31 Å/cycle Rs: 6.5 Ω /sq; ρ~ 31 μΩ•cm

Not Self Limiting \rightarrow pulsed-CVD

Dr. Scott B. Clendenning, Intel

B. Vidjayacoumar, D. J. H. Emslie, S. B. Clendenning and J. M. Blackwell *et al. Chem. Mater.*, **2010**, *22*, 4844-4853.

- Zinc incorporation results from **Zn CVD**, which is significant at **2 Too** C which is significant at **> 100 ^oC**
- **DEPARTMENT ON SIDE CONSTRUCTS** oppor procursor was 120 0. • **Minimum delivery temperature** for our copper precursor was 120 $°C$.
- With a more volatile copper precursor, Fischer, Sung *et al.* demonstrated Cu metal ALD using ZnEt₂ at 100 °C $R = 0.5$ $R = 1.2008$ (*Angew. Chem. Int. Ed.* **2009**, *48*, 4536-4539)

Not Self Limiting \rightarrow pulsed-CVD

Dr. Scott B. Clendenning, Intel

B. Vidjayacoumar, D. J. H. Emslie, S. B. Clendenning and J. M. Blackwell *et al. Chem. Mater.*, **2010**, *22*, 4844-4853.

- Zinc incorporation results from **Zn CVD**, which is significant at **2 Too** C which is significant at **> 100 ^oC**
- **DEPARTMENT ON SIDE CONSTRUCTS** oppor procursor was 120 0. • **Minimum delivery temperature** for our copper precursor was 120 $°C$.
- With a more volatile copper precursor, Fischer, Sung *et al.* demonstrated Cu metal ALD using ZnEt₂ at 100 °C $R = 0.5$ $R = 1.2008$ (*Angew. Chem. Int. Ed.* **2009**, *48*, 4536-4539)

Not Self Limiting \rightarrow pulsed-CVD

What Can we learn from NMR Spectroscopy?

Prepare NMR samples in the glovebox

Record NMR Spectra as Reactions Proceed (increasing temperature incrementally if necessary)

NMR Spectrum – CuL₂ + x **ZnEt₂**

x **= 0.3 20 ^oC, 15 min**

> All Stable Intermediates / Byproducts Independently Synthesized. **Selected X-ray Crystal Structures:**

CuL_2 + *n* ZnEt₂ \rightarrow Cu metal + byproducts

- Multi step mechanism with several different available pathways
- Reaction steps identified by observation and synthesis of intermediates and byproducts
- *n*-Butane is the only gas formed during reduction from Cu^{II} to Cu^I.
- Ethylene, ethane and hydrogen (not *n*-butane) are formed during reduction from Cu^I to Cu^o (copper metal).

SOLUTION Reaction Pathway

Thermal ALD of Transition Metals (or pulsed-CVD)

Ti

THE CHALLENGE OF EARLY TRANSITION METAL ALD

 $WF_6 + H_3Si-SiH_3 \longrightarrow W + H_{4-n}SiF_n$

J.W. Klaus, S.J. Ferro, S.M. George, Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions, *Appl. Surf. Sci.*, **2000**, *162–163* 479–491.

Analogous reaction with TaF $_5$ generated Ta silicide

Lemonds, A.M.; White, J.M.; Ekerdt, J.G., Surface science investigations of atomic layer deposition half-reactions using TaF⁵ and Si2H⁶ , *Surf. Sci.,* **2003**, *538*, 191.

Klesko, J. P.; Thrush, C. M.; Winter, C. H., Thermal Atomic Layer Deposition of Titanium Films Using Titanium Tetrachloride and 2-Methyl-1,4-bis(trimethylsilyl)-2,5-cyclohexadiene or 1,4-Bis(trimethylsilyl)-1,4-dihydropyrazine, *Chem. Mater.* **2016**, *28*, 700.

GPC 0.06 Å/cycle. Rapid oxidation to TiO₂ in air, but some Ti metal remains deeper in the film, according to XPS

Kalutarage, L. C.; Martin, P. D.; Heeg, M. J.; Winter, C. H., Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films, *J. Am. Chem. Soc.* **2013**, *135*, 12588.

GPC 0.06 A/cycle. Rapid oxidation to TiO₂ in air, but some Ti metal remains deeper in the film, according to XPS

Kalutarage, L. C.; Martin, P. D.; Heeg, M. J.; Winter, C. H., Volatile and Thermally Stable Mid to Late Transition Metal Complexes Containing α-Imino Alkoxide Ligands, a New Strongly Reducing Coreagent, and Thermal Atomic Layer Deposition of Ni, Co, Fe, and Cr Metal Films, *J. Am. Chem. Soc.* **2013**, *135*, 12588.

Ti

Mn

'Bu Мe

ίB

 $E_{\rm B}$

THE CHALLENGE OF EARLY TRANSITION METAL ALD

 $WF₆ + H₃Si-SiH₃$ \longrightarrow W + H_{4-p}SiF_n

Мe

Bп Me

'IVIE 'Bu

Analogous reaction with TaF $_5$ generated Ta silicide

J.W. Klaus, S.J. Ferro, S.M. George, Atomically controlled growth of tungsten and tungsten nitride using sequential surface reactions, *Appl. Surf. Sci.*, **2000**, *162–163* 479–491.

Lemonds, A.M.; White, J.M.; Ekerdt, J.G., Surface science investigations of atomic layer deposition half-reactions using TaF⁵ and Si2H⁶ , *Surf. Sci.,* **2003**, *538*, 191.

Klesko, J. P.; Thrush, C. M.; Winter, C. H., Thermal Atomic Layer Deposition of Titanium Films Using Titanium Tetrachloride and 2-Methyl-1,4-bis(trimethylsilyl)-2,5-cyclohexadiene or 1,4-Bis(trimethylsilyl)-1,4-dihydropyrazine, *Chem. Mater.* **2016**, *28*, 700.

GPC 0.06 A/cycle. Rapid oxidation to TiO₂ in air, but some Ti metal remains deeper in the film, according to XPS

 \mathbb{K} \mathbb{R} tarage \mathbb{R} concentually the two precursors serve as a more reactive Middle Metally Metally Metally Metally Metally C_r and C_r conceptually, the two precursors serve as a more reactive C_r and C_r form of a disilone (Me Si SiMe), which strips shloride ligands **Depostuor** form of a disilane (Me₃Si-SiMe₃), which strips chloride ligands from titanium.

Me

Requires a volatile metal chloride, which is likely to limit translation of methodology to most other early transition metals.

• GPC 0.07-0.10 Å/cycle

 tBt

Bu Me

THE CHALLENGE OF EARLY TRANSITION METAL ALD

An Alternative Approach:

Organometallic Precursors for Electropositive Metal ALD ?

- **Reduction** to elemental metal becomes increasingly challenging for more electropositive metals
- Electropositive metals have a high tendency to form **oxides, nitrides and halides**, making many coordination complexes poorly suited for electropositive metal ALD

Can highly reactive *organometallic precursors*

(acyclic hydrocarbyl complexes, rather than cyclopentadienyl complexes) be used for electropositive metal ALD?

An Alternative Approach:

Organometallic Precursors for Electropositive Metal ALD ?

- **Reduction** to elemental metal becomes increasingly challenging for more electropositive metals
- Electropositive metals have a high tendency to form **oxides, nitrides and halides**, making many coordination complexes poorly suited for electropositive metal ALD

Can highly reactive *organometallic precursors*

(acyclic hydrocarbyl complexes, rather than cyclopentadienyl complexes) be used for electropositive metal ALD?

How will the necessary *thermal stability* be achieved without compromising: (a) *volatility* and (b) *reactivity*?

The metal precursor must be:

- Thermally robust & volatile
- Reactive towards the desired co-reactant --- for this reason, *highly reactive metal alkyl and allyl complexes* are the focus of this work

Co-Reactants Selected to form Alkyl / Hydride Intermediate which should be particularly prone to reductive elimination

Co-reactants:

- **Class 1** co-reactants (H₂, PhSiH₃, R'₂BH) form the alkyl / hydride complex directly
- **Class 2** co-reactants (BEt₃, AlEt₃, ZnEt₂) initially form an unstable ethyl complex

Co-reactants:

- Class 1 co-reactants (H₂, PhSiH₃, R'₂BH) form the alkyl / hydride complex directly
- Class 2 co-reactants (BEt_3 , AEt_3 , $ZnEt_2$) initially form an unstable ethyl complex

Co-reactants:

- Class 1 co-reactants (H₂, PhSiH₃, R'₂BH) form the alkyl / hydride complex directly
- Class 2 co-reactants (BEt_3 , AEt_3 , $ZnEt_2$) initially form an unstable ethyl complex

Precursor Design

- *Oxygen-free alkyl and allyl complexes*
- **All complexes will be** *highly reactive* **due to the presence of metal-carbon bonds**

-
- presence of a-hydrogen atoms may render complexes **less thermally stable**

<u>(2) Tertiary alkyl complexes</u> [C(SiR₃)₃ complexes]

- **-** a**-hydrogen free**, and b**-hydrogen free**
- Complexes expected to exhibit **high thermal stability** (resistance to carbide formation)

(3) Bulky allyl complexes

- resistant to common decomposition pathways
- allyl complexes often have **higher thermal stability than alkyl complexes**
- allyl complexes are **much more reactive than cyclopentadienyl complexes**

Tertiary ALKYL and ALLYL Complexes

MIXED ALKYL (TSI) / ALLYL (allylTMS2) MANGANESE(II) COMPLEXES 35

MIXED ALKYL (TSI) / ALLYL (allylTMS2) MANGANESE(II) COMPLEXES 36

X-Ray Crystal Structures of [(allylTMS2)Mn(TSI)L] Complexes

PRIMARY ALKYL MANGANESE(II) COMPLEXES: R = CH2CMe³

J. S. Price, P. Chadha, D. J. H. Emslie, *Organometallics*, **2016**, *35*, 168-180.

PRIMARY ALKYL MANGANESE(II) COMPLEXES: R = CH2CMe³

J. S. Price, P. Chadha, D. J. H. Emslie, *Organometallics*, **2016**, *35*, 168-180.

Solution Reactivity of Primary Alkyl Manganese(II) Complexes with H²

ALD using forming gas <u>**(5% H₂ in N₂)**</u>

- With substrate = 125 °C , a GPC of 0.2 Å / cycle was observed on Ru seed.
- The film was nonconductive after airexposure, likely due to complete oxidation…

Ru seed Thickness ~ 80 Å (ellipsom), GPC ~ 0.2 Å/cycle

400 x [3s Mn / 5s purge / 2s FG / 15 s purge]

196-2 SH 5.0kV 4.7mm x180k SE(U) 6/17/2014 300nm

J. S. Price, P. Chadha, D. J. H. Emslie, *Organometallics*, **2016**, *35*, 168-180.

- With substrate = 110 °C, a GPC of 0.3 Å / cycle was observed on Ru seed.
- $XPS: \sim 1:1$ ratio of Mn:S with no P and low C. 5-10% O, presumably due to air exposure…

Ru seed Ru seed Thickness ~ 80 Å (ellipsom), Thk ~ 390 Å (XSEM) GPC ~ 0.2 Å/cycle GPC ~ 0.33 Å/cycle

1200x [3s Mn / 8s purge / 3s Mn / 4s purge / 0.4s H $_{\rm 2}$ S / 8s purge] 196-3B_SH 5.0kV 4.8mm x180k SE(U) 6/26/2014 $300nm$

ALD using forming gas <u>**(5% H₂ in N₂)**</u>

- With substrate = $125 °C$, a GPC of 0.2 Å / cycle was observed on Ru seed.
- The film was nonconductive after airexposure, likely due to complete oxidation…

Ru seed Thickness ~ 80 Å (ellipsom), GPC ~ 0.2 Å/cycle

400 x [3s Mn / 5s purge / 2s FG / 15 s purge]

196-2 SH 5.0kV 4.7mm x180k SE(U) 6/17/2014 300nm

ALD Reactor Studies

- Until recently, all ALD studies on our compounds were conducted by collaborators.
- We now have a home-built ALD reactor, so further studies on our Mn cpds are on the schedule for this summer...

Summary / Conclusions

- **Many reported ALD processes are far from ideal:**
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required. certain substrates, limited selection of precursors with appropriate thermal stability) - High deposition temperature (leading to agglomeration, low film purity, incompatibility with
- volations and co-reactants) of the co-reactants in the co-reactants in the co-reactant co-reactants in the co-
- For metal ALD, most new ALD, most new ALD methods leading to ALD of previously inaccessible materials rely u Very low GPC
- correlation of the correlation o
- For the most precursors are not organometers are not organometers are exceptions). The exceptions are exceptions are exceptions are exceptions are exceptions are exceptions). The exceptions are exceptions are exceptions
- Undesirable substrate selectivity (e.g. no deposition on H-terminated Si) ed Si) for metal album in the initial for metal for \sim
	- Undesirable reactivity between the co-reactant and the underlying substrate.

below 100 °C. --- Solution reactivity studies can provide mechanistic insight.

The Mn chemistry highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition.

where precursors volatility now appears to be the limitation in terms of accessing Cu deposition significantly

- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

Summary / Conclusions 44

- Many reported ALD processes are far from ideal:
- **Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.** Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required. -**Consequently, new precursors, co-reactants, reactivities and methods are required.**
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or volatile precursors and co-reactants) offers various advantages: **more volatile precursors and co-reactants) offers various advantages:** more volatile precursors and co-reactants) offers various advantages:
For metal ALD, most new ALD methods leading to ALD of previously inaccessible aterials rely upon new - Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- **ALD at lower temperature (may require**
- co-reactants rather than new metal precursors.
- **Example 2** Avoids agglomeration of thin metal films.
- Compatible with a broader range of substrates, perhaps including those with polymer patterning.
- Leads to more predictable chemistry, potentially generating higher purity films.
- Can allow use of less-thermally robust but higher-volatility (and perhaps higher reactivity) precursors and co-reactants.
- The Mn chemistry highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition. of manganese alkyl and allyl complexes for Mn metal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

- Many reported ALD processes are far from ideal: Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more volatile precursors and co-reactants) offers various advantages: - ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more
volatile precursors and co-reactants) offers various advantages:
- For metal ALD, most new ALD methods leading to ALD of
- **upon new co-reactants rather than new metal precursors.** co-reactants rather than new metal precursors.

- For thermal metal ALD, most precursors not organometallic (some Pt compounds are exceptions). -**For thermal metal ALD, most precursors not organometallic (some Pt compounds are exceptions).**

- The Cu chemistry highlights the use of a new type of co-reactant (ZnEt₂) for metal ALD. - The Cu chemistry highlights the use of a new type of co-reactant (ZnEt₂) for metal ALD.
--- The initial focus was not on Cu precursor design. However, limitations in ZnEt₂ thermal stability brought the work full circle, where precursor volatility now appears to be the limitation in terms of accessing Cu deposition significantly below 100 $\mathrm{^{\circ}C}$. --- Solution reactivity studies can provide mechanistic insight. 45

Histo, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.

- ALD at lower temperature (may required.

- ALD at lower temperature (may required) consequently, new precursors, co-r
- The Mn chemistry highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition. of manganese alkyl and allyl complexes for Mnmetal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

Summary / Conclusions 46

- Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more volatile precursors and co-reactants) offers various advantages:
- For metal ALD, most new ALD methods leading to ALD of previously inaccessible materials rely upon new co-reactants rather than new metal precursors.
- For thermal metal ALD, most precursors not organometallic (some Pt compounds are exceptions).
- <mark>The Cu chemistry</mark> highlights the use of a new type of co-reactant (ZnEt₂) for metal ALD. --- The initial focus was not on Cu precursor design. However, limitations in ZnEt₂ thermal stability brought the work full circle, where precursor volatility now appears to be the limitation in terms of accessing Cu deposition significantly below 100 °C. --- Solution reactivity studies can provide mechanistic insight.
- **The Mn chemistry** highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition.
- Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.

Summary / Conclusions 47

- Many reported ALD processes are far from ideal:
- Also, many materials (especially pure elements) simply cannot yet be deposited by thermal ALD.
- Consequently, new precursors, co-reactants, reactivities and methods are required.
- ALD at lower temperature (may require more reactive precursor/co-reactant combinations and/or more volatile precursors and co-reactants) offers various advantages:
- For metal ALD, most new ALD methods leading to ALD of previously inaccessible materials rely upon new co-reactants rather than new metal precursors.
- For thermal metal ALD, most precursors not organometallic (some Pt compounds are exceptions).
- The Cu chemistry highlights the use of a new type of co-reactant (ZnEt₂) for metal ALD. --- The initial focus was not on Cu precursor design. However, limitations in ZnEt₂ thermal stability brought the work full circle, where precursor volatility now appears to be the limitation in terms of accessing Cu deposition significantly below 100 °C. --- Solution reactivity studies can provide mechanistic insight.
- **The Mn chemistry** highlights a new approach for electropositive metal ALD: harnessing the high reactivity of manganese alkyl and allyl complexes for Mn metal deposition.
- **Highly reactive organometallic precursors have the disadvantage of high air-sensitivity. However, they may allow deposition of multiple materials from a single precursor.**

ACKNOWLEDGEMENTS

CRSNG

ALD Research in the Group: **Current Current Current Cu Mn Mn** Bala Preeti Jeffrey **Nick** Majeda **Novan** *Funding for the Cu and Mn work: through:* **NSERC intel**)

Questions ?

Semiconductor Research Corporation