Basic Mechanisms in Plasma Etching Vincent M. Donnelly University of Houston 1 2 Outline • Brief history of plasma etching, anisotropic vs. isotropic etching, and mechanisms for  anisotropy • Etching product volatility • Adsorption and reactant sticking coefficients • Chlorination of Si during chlorine plasma etching • Chemical etching of Si by F atoms  • Unwanted photo‐assisted etching of Si History of plasmas and plasma etching • In the early days of integrated‐circuit processing, wet‐etching was used for  pattern transfer.  • In late 1960s – early 1970s, plasma‐based pattern transfer replaced wet etching  for two reasons: 1) anisotropic etching for finer feature pattern transfer 2) eliminate wet chemical waste disposal. • Early sputtering done with Ar plasmas. • O2 plasmas used to strip photoresist. • Fluorine and chlorine‐containing plasmas used to etch Si, SiO2 and Al. • Use of additives (e.g. H2) or alternative gases to CF4 (C2F6, C3F8, CHF3) to  increase selectivity of etching of SiO2 with respect to Si (Heinecke). 3 EARLY 1960’s BARREL PLASMA ETCHING • Early plasma reactors were barrel type. • Wafers were placed in a quartz chamber with external electrodes or coil. • Adequate for resist stripping. Lacked wafer temperature control. Suffered from  etch nonuniformity.  • Low energy ions and high pressure led to isotropic etching.  4 RADIAL FLOW REACTOR (“REINBERG REACTOR”) • Inward (radial) flow was thought to compensate for gas consumption. • Wafers on the grounded electrode; RF applied to opposite electrode. • Some anisotropy, but still not adequate. 5 MIGRATION OF WAFERS TO THE SMALLER ELECTRODE low-energy ion high-energy ion high-energy ion bombardment bombardment bombardment • Motivated by the (incorrect) theory that voltage is inversely proportional to the  electrode area ratio to the 4th power.  • Actually it scales more like the inverse area ratio to the 1st power. Nonetheless,  smaller electrode receives high‐energy ion bombardment. 6 THE NEED FOR ANISOTROPIC PLASMA ETCHING 7 Some Basic Considerations in Ion-Assisted Etching Ion‐Neutral Synergy and Ion‐Assisted Etching • Etching “reactions”: Feed gas + plasma  neutral radicals, (+) ions radicals + (+) ions + chamber surface  other products neutrals (inc. radicals) + (+) ions + wafer  volatile products • Characteristics of anisotropic plasma etching: - Perpendicular bombardment of the surface by + ions that are accelerated by a sheath potential - Anisotropic etching relies on a synergy between ion and neutral reactions on the surface (“the whole is greater than the sum of its parts”). First explained in an experiment by Coburn and Winters at IBM Research Laboratories in San Jose, CA. They used ion and molecular beams to simulate a plasma: 8 9 Some Basic Considerations in Ion-Assisted Etching Ion‐Neutral Synergy and Ion‐Assisted Etching (cont.) • Coburn and Winters’ famous ion and molecular beams experiment: 10 Etching Mechanism 1: substrate or film substrate or film substrate or film + sputtered product Physical sputtering (slow) Chemical etching (slow) + Chemical sputtering (fast) Chemical Sputtering Mechanism for Anisotropic Etching + = positive ion = neutral chemisorbed layer • Good example of chemical sputtering: Si etching in a Cl2 plasma. 10 11 Etching Mechanism 2: Sidewall Inhibitor • Isotropic chemical etching is sometimes very fast. This process can be slowed or stopped by adding an “inhibitor” to the plasma gas. • Inhibitor coats vertical sidewall but is sputtered away on horizontal surfaces. • Good examples of sidewall inhibitor: 1) etching of photoresist‐masked Al in a Cl2/BCl3 plasma; 2) Bosch process for MEMS etching in SF6 and C4F8 pulsed gas plasmas. • Plasma etching is the gasification of a solid by reactive species that are formed in the plasma. • For example, fluorine and chlorine atoms are known to convert solid silicon into gaseous SiF4 and SiCl4. The overall reactions are: 4F(g) + Si(s)  SiF4(g) 4Cl(g) + Si(s)  SiCl4(g) • Ion bombardment also accelerates these reactions. THE IMPORTANCE OF VOLATILE PRODUCTS 12 Solid elements to be etched                        gaseous etchant elements 13 Volatile the etching products in halogen, carbon, hydrogen, and oxygencontaining plasmas are SiF4, SiF2, SiCl4, SiCl2, SiBr4, SiBrxHy, SiClxBryHz, SiOF2, CO, CO2, O2, COF2, metal halides and metal oxy-halides. • For a compound to be sufficiently volatile, its evaporation rate should be much higher than the desired etching rate. • The maximum evaporation rate is computed by the principle of detailed balance: at equilibrium, the forward and reverse rates of every elementary process are equal. • Consequently, for a gaseous species at a number density, n, in equilibrium with its liquid or solid state in a closed system, its evaporation rate equals its impingement rate on the solid or liquid. • The impingement rate or flux (molecules-cm2s-1) of species onto a surface is 4 nv fi  Some Basic Considerations in Etching Vaporization of Products 14 • The thermal speed, v (in cm/s), is given by where k is the Boltzman constant (8.314 x 107 erg K-1mole-1), T is the temperature in Kelvin, and m is the mass in grams/mole. • For an ideal gas at pressure p (in dyne-cm-2 [1 dyne-cm-2 = 0.1 Pa = 7.502 x 10-5 Torr]), the impingement rate is • The equilibrium vapor pressure, pV, is given by the Clausias-Claperon equation: Some Basic Considerations in Etching Vaporization of Products (cont.) 2/1 8        m kT v  mkT p fi 2          RT H ppV exp0 15 where H is the heat of vaporization and p0 is a constant of integration. Consequently, at equilibrium, the evaporation rate (equals the impingement rate) is given by • NOTE: The evaporation rate is given by the right side of this equation, regardless if the system is closed or open and far from equilibrium, as it always in in plasma etching. Some Basic Considerations in Etching Vaporization of Products (cont.) mkT p ff V ie 2  16 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 1 10 100 CBr4 CCl4 150 100 50 -2525 0 SiBr4 SiCl4 T( o C) VAPORPRESSURE(TORR) 1000/T(K) Some Basic Considerations in Etching Vaporization of Products (cont.) • Equilibrium vapor pressures of Si and C halides. • (SiF4 and CF4 are gases). • Note the much lower vapor pressures of the Br compounds relative to Cl (and F) products. • Does this explain slower etching rates for Br? No. 17 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6 3.8 4.0 4.2 1 10 100 CBr4 CCl4 150 100 50 -2525 0 SiBr4 SiCl4 T( o C) VAPORPRESSURE(TORR) 1000/T(K) Some Basic Considerations in Etching Vaporization of Products (cont.) Etching rates (Å/min) if limited by product vaporization rate. •  Si and C etching in Cl or Br-containing plasmas not limited by vaporization of tetrahalide compounds. ~109 ~108 ~107 18 Some Basic Considerations in Etching Product Desorption Rates • For a species to be present on the surface during etching, it must be strongly adsorbed. The rate of thermal desorption (s-1) is given by • 0 is the pre-exponential or so-called attempt frequency and Ea is the activation energy for desorption (i.e. binding energy) of the adsorbate. • 0 is often set equal to a typical vibrational frequency of ~1013s-1, but in fact 0 = kT/h(qts/qr), where qts and qr are partition functions of the transition state for desorption and the reactant state. • 0 can vary from typically 108 to 1015 s-1. • Ea can also span a wide range of values, reflecting the complex nature of the surface layer and the multitude of bonding configurations. )/exp(0 RTEk ad   19 Some Basic Considerations in Etching Product Desorption Rates (cont.) • Using  0 = 1013s-1 and above eq. for kd, it follows that for a species to have a lifetime (1/kd) ~0.1s on the surface, comparable to the time required to etch 1 monolayer, must have a binding energy, Ea = 16 kcal/mole (0.69 eV) at room temperature. • Ea = 16 kcal/mole exceeds physisorption energies for most adsorbatesubstrate combinations. Products like SiBr4 should be much more weakly bound and therefore desorb nearly instantaneously after being formed. • Ea = 16 kcal/mole is less than most chemical bonds, consequently any chemisorbed species will likely live indefinitely on the surface. • Therefore, surfaces are covered with chemisorbed species during and after etching. 20 Some Basic Considerations in Etching Adsorption and Etching by Neutrals Unoccupied site Occupied site SURFACE SITES IN L-H MODEL 21 • A sticking coefficient can be defined by the Langmuir-Hinshelwood (L-H) adsorption model. •  = relative density of adsorption sites (0 <  < 1). The probability for adsorption is where S is the sticking coefficient (or sticking probability) at an unoccupied site. • When all sites are occupied, the probability for adsorption is zero. Most etching processes operate near this limit. • On atomically rough surfaces that are present during etching, the adsorption and diffusion processes are more complicated, with a range of differing adsorption sites and rates. )1(  Skads 22 Cl Uptake on Si (100) in a Cl2 plasma 0 10 20 30 40 50 60 70 80 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 P=2.1 mTorr Cl2 ClCOVERAGE(X10 15 ) P=0.6 mTorr Cl2 SiClLD-LIFINTENSITY(ARB.UNITS) LASER REPETITION RATE (Hz) excimer laser pulse Laser‐induced heating SiCl desorption SiCl excitation (by laser, close to the substrate) Plasma SiClx layerSi 1) 2) 3) • A simple Langmuir‐Hinshelwood (L‐H) model was fit to the measurements. • The model reproduces that trends at both pressures with a single sticking  coefficient times flux, where the chlorinating species could be Cl, Cl2, Cl+ and  Cl2 +.  The chlorination rate constant is 8 x 104s‐1Torr‐1 for a plasma with ~10%  dissociation of Cl2 and an ion density of ~5 x 1010cm‐3. 23 97 98 99 100 101 102 103 104 105 0 10 20 30 SiCl4 (none) SiCl3 SiCl2 SiCl Si Si· 10.0 sccm Cl2  = 30° Intensity(counts) Binding Energy (eV) Cl Uptake on Si (100) in a Cl2 plasma 0 5 10 15 20 25 30 35 40 45 50 0.00 0.05 0.10 0.15 0.20 0.25 Si Si· SiCl3 SiCl2 SiCl RelativeConcentration Depth (Å)• SiClx ~ 16 Å • SiCl>SiCl2>SiCl3>SiCl3O depth and concentration • Si∙deep into layer 24 0 2 4 6 8 10 12 14 16 18 1.0 1.5 2.0 2.5 3.0 3.5 Si(100) HR plasma, XPS HR plasma, LD-LIF ICP plasma, LD-LIF ClCOVERAGE(10 15 cm -2 ) E 1/2 (eV 1/2 ) Cl Uptake on Si (100) in a Cl2 plasma: Dependence on Ion Energy 25 Cl Uptake on Si (100) in a Cl2 plasma: Dependence on Ion Energy Some Basic Considerations in Etching Adsorption and Etching by Neutrals (cont.) • Some materials (e.g. Si) will be etched by neutrals (e.g. F-atoms) in the absence of ion bombardment. This reaction is mainly responsible for deep Si etching in SF6 plasmas. • Define a reaction coefficient for etching, X(S), as the probability that an atomic or molecular material, S, will be converted into a volatile products per impinging neutral, X (in the absence of ion bombardment or other sources of energetic particles), RX(S) = etching rate, NA = Avogadro’s number, rS and MS are density and mass of the substrate. (e.g. if 1000 impinging F atoms per area per time leads to 1 Si atom being etched, X(S) = 0.001. • If X(S) << S (S = sticking coefficient defined 2 slides back), then   1. )4/(S )S(S )S( XX XA X vnM RN    26 27 One Way to Measure X(S) : Downstream Reactor D.L. Flamm, V.M. Donnelly, and J.A. Mucha, The reaction of fluorine atoms with silicon. J. Appl. Phys, 1981. 52: p. 3633. • Eliminate ion bombardment • Measure absolute F number density by chemical titration. 28 Summary of Published Reaction  Probabilities for F +Si • Reported values (when  corrected) range from  0.00042 to 0.1! • How to explain this 240‐fold  discrepancy? 29 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 20 10 -3 10 -2 10 -1 ReactionProbability(F(Si) ) F Flux (cm -2 s -1 ) F + Si Reaction Probability Exhibits Strong Flux Dependence 30 10 11 10 12 10 13 10 14 10 15 10 16 10 17 10 18 10 19 10 20 10 -3 10 -2 10 -1 ReactionProbability(F(Si) ) F Flux (cm -2 s -1 ) In SF6 plasma F + Si Reaction Probability Much Higher in SF6 Plasmas Motivation : Precise Control of IED for ALE (I) Low energy ions : No reaction occurs except for pure chemical etching, if any. (II) High energy ions: chemical sputtering, sub-surface ion penetration, physical sputtering  not well-controlled etching, substrate damage. (III) Medium energy ions: Only chemical sputtering. More confined to surface. Etching slows or stops when adsorbed etchant reacts away.  minimum damage, layer-by-layer etching. Physical  Sputtering Eth Chemical  Sputtering Eth • Layer‐by‐layer etching, high selectivity, and no substrate damage are/will be  critical requirements. To achieve these, one needs to control the IED. • Accurate control of peak ion energy. • Narrow width of IED. • Work with medium energy ions (region III). (I) (II)(III) 31 Ion Energy Dependence of Si Etching in Chlorine-Containing Plasmas 32 “Kinetic study of low energy argon ion‐enhanced plasma etching  of polysilicon with atomic/molecular chlorine”, J. P. Chang, J. C. Arnold, G. C. H. Zau, H‐S. Shin, and H. H. Sawin, J.  Vac. Sci. Technol. A, 15, 1853 (1997). Yield (Si atoms etched per ion) Sqrt. ion energy (eV1/2) Characteristics of polycrystalline Si etching with Cl and Ar+ beams in high vacuum: • Etching exhibits a threshold ion energy of 16 eV. • Above this threshold, etching rate increases with the  square root of ion energy. Poly‐Si Eth  16 eV 0 1 2 3 4 5 6 7 8 ER(Å/min)@50mTorr E 1/2 (eV 1/2 ) 0 100 200 300 400 500 Eth~16 eV What We Expect in a Pulsed Plasma for Si  Etching 33 0 2 4 6 8 101214161820222426283032 0.00 0.01 0.02 0.03 0.04 0.05 Eth~16 eV Time-AveragedIonEnergyDistribution Energy (eV) 50 mTorr etching no etching 0 10 20 30 40 0.00 0.01 0.02 0.03 0.04 0.05 Eth~16 eV Time-AveragedIonEnergyDistribution Energy (eV) 50 mTorr • Ar/Cl2 (few %) pulsed plasma. • 20 s ON 80 s OFF. • Synchronous DC bias in the afterglow at 70‐97 s. • 1015 /cm3 p‐type Si • Above threshold etching looks like what we  expect. • Big question (and big problem): What causes  sub‐threshold etching? 34 What Causes Sub‐threshold Etching? • Spontaneous chemical etching by Cl atoms? ‐ It is widely reported that this does not happen for p‐type or i‐Si (only heavily doped n‐type). SiO2 mask Si ‐ This is confirmed in our cross section SEMs: no undercutting of the mask. • Therefore spontaneous chemical etching by Cl atoms is not the reason. 35 Grids / Substrate Bias Experiments 1 -30 -20 10 20 30 -4 Current (mA) -2 Voltage (V) 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 RelativeEtchingRate energetic positive ions Cl, Cl2, photons positive ions Cl, Cl2, photons V Si Cl2/Ar Plasma ‐5V 0.1 L/0.1S 0V‐20V Conclusion: Sub‐threshold etching is  due to photo‐assisted etching induced  by plasma light. 36 Summary • After nearly 50 Years, plasma etching is well established yet  challenges persist. • As processes evolve to atomic layer etching, ion‐induced lattice  damage and mixing of etchant and substrate atoms present major  problems, requiring controlled fluxes of low energy ions. • Photo‐assisted reactions also complicate etching with low energy  ions. 37 More details can be found in: • “Plasma Etching: Yesterday, Today, and Tomorrow”, V. M. Donnelly and A. Kornblit,  J. Vac. Sci. Technol. A, 31, 050825‐1 (2103). • “Critical review: Plasma‐surface reactions and the spinning wall method”, V. M.  Donnelly, J. Guha, and L. Stafford, J. Vac. Sci. Technol. A, 29, 010801‐1 (2011). • “The surprising Importance of Photo‐assisted Etching in Chlorine‐Containing  Plasmas”, H. Shin, W. Zhu, C. M. Donnelly and D. J. Economou, J. Vac. Sci. Technol.  A, 30, 201306 (2012). • “Review: Reactions of fluorine atoms with silicon, revisited, again”, V. M. Donnelly,  J. Vac. Sci. Technol. A, 35, 05C202‐1 (2017).