ALE 2017 Tutorial

Atomic Layer Etching with Ion/Neutral Beams

2017. 07. 15.

Geun Young Yeom

School of Advanced Materials Science and Engineering Sungkyunkwan University (SKKU), Korea

Contents

ALE Technology

Mechanism of ALE

Chemisorption of Cl₂ on materials

Dissociative Langmuir isotherm chemisorption :

$$\mathcal{Cl}_{2(g)} + 2M_{(ad)} \xrightarrow{k_1} 2M\mathcal{Cl}_{(ad)}$$

Coverage of the MCI precursor :

$$k_1 = \frac{\theta_{MCl}^2}{(1 - \theta_{MCl})^2 P_{Cl_2}} \implies \theta_{MCl} = \frac{\sqrt{k_1 P_{Cl_2}}}{1 + \sqrt{k_1 P_{Cl_2}}}$$

Desorption of chemisorbed materials by Ar⁺ bombardment

Sputtering of MCI by Ar bombardment:

where,

$$MCl_{(ad)} \xrightarrow{k_2, Ar_{neu}} MCl_{(g)}$$

 k_1 : adsorption rate constant (Pa·s)⁻¹ k_2 : desorption rate constant (s)⁻¹ P_{Cl2} : Cl_2 pressure (Pa)

Sputtering rate of Cl-adsorbed Material (MCl) :

$$f_{MCl} \propto k_2 \theta_{MCl} f_{Ar_{neu}}$$

Adsorption Condition for ALE

onolayer of precursor, stron g chemisorption (=chemical bonds formed) Physisorption only (weak bon ds like van der Waals): once precursor flux is stopped, surf ace specie will desorb. Physisorption multila yers and continuous deposition

Adsorption and Reaction at Surfaces

FIIYSISUIPUUI

weak, long range bonding

Van der Waals interactions

Not surface specific

 $\Delta H_{ads} = 5 \sim 50 \text{ kJ/mol}$

No surface reaction

Multilayer adsorption BET Isotherm used to model adsorption equilibrium

strong, short range bonding Chemical bonding involving orbital overlap and

Charge transfer

Surface specific

 $\Delta H_{ads} = 50 \sim 500 \text{ kJ/mol}$

Surface reactions may take place Dissociation, reconstruction, catalysis

Monolayer adsorption Langmuir Isotherm used to model adsorption equilibrium

First Principle Study of Al₂O₃ ALE

Adsorption

"Understanding time-resolved processes in atomic-layer etching of ultra-thin Al₂O₃ film using BCl₃ and Ar neutral beam" Young I. Jhon, Kyung S. Min, G. Y. Yeom, and Young Min Jhon Appl. Phys. Lett. 105, 093104 (2014)

Sputter Rate of Silicon in a Cl₂ Environment

"Molecular dynamics simulation of atomic layer etching of silicon" Satish D. Athavale and Demetre J. Economou J. Vac. Sci. Technol. A 13 (2) (1995)

"Near threshold sputtering of Si and SiO₂ in a Cl₂ environment" D. J. Oostra, R. P. van Ingen, A. Haring, and A. E. de VriesG. N. A. van Veen Appl. Phys. Lett. 50, 1506 (1987)

ion energy (eV)

Si ALE as a function of Ar Beam Energy

ALD 20

Base pressure	2.0 × 10 ⁻⁶ Torr
Operating pressure	4.0 × 10 ⁻⁴ Torr
Cl ₂ partial pressure	10 mPa
t _{CI2}	20 sec
t _{Ar+}	5 sec
Ar flow rate	40 sccm
RF power	50 W
Ion acceleration voltage	40 ~ 150 V

Below about 50 eV of energy, the chemical etching is found to be more dominant than the physical sputtering. Etch rate increase by Ar energy (Threshold E < 50 eV)

Use time domain to simplify

"Overview of atomic layer etching in the semiconductor industry" Keren J. Kanarik, Thorsten Lill, Eric A. Hudson, Saravanapriyan Sriraman, Samantha Tan, Jeffrey Marks, Vahid Vahedi, and Richard A. Gottscho J. Vac. Sci. Technol. A 33 (020802) (2015)

First Principle Study of Al₂O₃ ALE

Desorption

"Understanding time-resolved processes in atomic-layer etching of ultra-thin Al₂O₃ film using BCl₃ and Ar neutral beam" Young I. Jhon, Kyung S. Min, G. Y. Yeom, and Young Min Jhon Appl. Phys. Lett. 105, 093104 (2014)

Threshold Energy for Sputtering

Ion energy control is essential to enable atomic scale precision

 Energy threshold chosen specifically to enable reactant activation and removal of one material selective to all others

TABLE 1 Threshold Energies

	Ne	Ar	Kr	Xe	Hg		Ne	Ar	Kr	Xe	Hg
Be	12	15	15	15		Mo	24	24	28	27	32
Al	13	13	15	18	18	Rh	25	24	25	25	1000
Ti	22	20	17	18	25	Pd	20	20	20	15	20
V	21	23	25	28	25	Ag	12	15	15	17	
Cr	22	22	18	20	23	Ta	25	26	30	30	30
Fe	22	20	25	23	25	W	35	33	30	30	30
Co	20	25	22	22	1000	Re	35	35	25	30	35
Ni	23	21	25	20		Pt	27	25	22	22	25
Cu	17	17	16	15	20	Au	20	20	20	18	
Ge	23	25	22	18	25	Th	20	24	25	25	
Zr	23	22	18	25	30	U	20	23	25	22	27
Nb	27	25	26	32	22252		1000	1222	1000	1.22	

Boldface values are those for which the energy-transfer factor $4m_1m_2/(m_1 + m_2)^2$ is 0.9 or higher.

"Sputtering Yields at Very Low Bombarding Ion Energies" R. V. Stuart and G. K. Wehner Journal of Applied Physics, 7 (33) (1962)

"Atomic Layer Etching at the Tipping Point: An Overview" G. S. Oehrlein, D. Metzler, and C. Li ECS Journal of Solid State Science and Technology, 4 (6) N5041-N5053 (2015)

Energy Control of Energetic Particles for Desorption

• Energy distribution of the ions incident to the electrode by the above oscillation

 \therefore During the pass of sheath, the incident ions oscillate for a few times

Energy Control of Energetic Particles for Desorption

Novel plasma pulsing methods (waveforms) can be used to tailor ion energy distribution function

"Atomic layer etching with pulsed plasmas" Vincent M. DONNELLY, Demetre J, and ECONOMOU US 20110139748A1, 2011

ALD 2017

"Control of ion energy distribution at substrates during plasma processing" S.-B. Wang and A. E. Wendt Journal of Applied Physics 88, 643 (2000)

Formation of Energetic Neutral Beam

ALD 2

Scattered Projectile

Ion-surface neutralization

When the ion beam was reflected by a reflector at the angles lower than 15°, most of the ions reflected were neutralized and the lower reflector angle showed the higher degree of neutralization.

15

Contents

ALE using ECR Ion Source

 CF_4/O_2

"Digital chemical vapor deposition and etching technologies for semiconductor processing" Y. Horiike, T. Tanaka, M. Nakano, S. Iseda, H. Sakaue, A. Nagata, H. Shindo, S. Miyazaki, and M. Hirose J. Vac. Sci. Technol. A 8 (3) (1990)

ALE of Si using Low Energy Ion (ECR)

"Selflimited layerbylayer etching of Si by alternated chlorine adsorption and Ar⁺ ion irradiation" Takashi Matsuura, Junichi Murota, Yasuji Sawada, and Tadahiro Ohmi Appl. Phys. Lett. 63 (20) (1993)

ALE using Helical Plasma Source

Duration of step (3) (s)

"Realization of atomic layer etching of silicon" Satish D. Athavale and Demetre J. Economou J. Vac. Sci. Technol. B 14(6) (1996)

Si ALE

Conditions :

"Surface Roughness Variation during Si Atomic Layer Etching by Chlorine Adsorption Followed by an Ar Neutral Beam Irradiation" S. D. Park, C. K. Oh, D. H. Lee, and G. Y. Yeom Electrochemical and Solid-State Letters, 8 11 C177-C179 (2005)

Etch Residue

Conditions :

- ICP Etching : BCl₃ (50 sccm)/Ar (50 sccm), 300 W, -60 V, 12 mTorr, 149 sec
- Atomic Layer Etching : Ne beam irradiation dose (1.485×10¹⁷ atoms/cm²·cycle), BCl₃ pressure (0.33 mTorr), Etch cycle (217 cycle)

Etched surface by XPS

"Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO₂ using BCl₃ and Ar Neutral Beam" S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom Electrochemical and Solid-State Letters, 11 4 H71-H73 (2008)

Contents

GaAs ALE using ECR Source

Layer by layer etching with the etch rate in the range of 0.5 nm/cycle has been achieved on GaAs.

"Controllable layerbylayer etching of III–V compound semiconductors with an electron cyclotron resonance source" K. K. Ko and S. W. Pang J. Vac. Sci. Technol. B 11(6) (1993)

GaAs ALE

Conditions :

Base pressure	3.0×10 ⁻⁷ Torr	1 st grid voltage	10 Volts	Cl ₂ pressure	0~0.62 mTorr
Chamber pressure	2.0×10 ⁻⁴ Torr	2 nd grid voltage	-250 Volts	Ne beam Irradiation dose	0 ~ 4.55×10 ¹⁶ atoms/cm2·cycle
Inductive power	300 Watts	Ne flow rate	70 sccm	Cl ₂ supply time (t _{Cl2})	10 sec

"Atomic layer etching of (100)/(111) GaAs with chlorine and low angle forward reflected Ne neutral beam" Woong Sun Lim, Sang Duk Park, Byoung Jae Park, Geun Young Yeom Surface & Coatings Technology 202, 5701–5704 (2008)

Stoichiometry Modification of GaAs Surface

Conditions :

ALET	Base pressure Chamber pressure	3.0×10 ⁻⁷ Torr 2.0×10 ⁻⁴ Torr	1 st grid voltage 2 nd grid voltage	10 Volts -250 Volts	Cl₂ pressure Ne neutral beam Irradiation dose	0.4 mTorr 3.03×10 ¹⁶ atoms/cm2∙cycle
	Inductive power	300 Watts	Ne flow rate	70 sccm	Cl ₂ supply time (t _{Cl2})	10 sec
	Inductive power	700 Watts	Etch time		12sec	
ICP	D.C bias voltage	-100 Volts	Gas pressure	12 r	nTorr [Cl₂(70sccm)/Ar(30)sccm)]

"Atomic layer etching of (100)/(111) GaAs with chlorine and low angle forward reflected Ne neutral beam" Woong Sun Lim, Sang Duk Park, Byoung Jae Park, Geun Young Yeom Surface & Coatings Technology 202, 5701–5704 (2008)

InP ALE

Conditions :

"Atomic layer etching of InP using a low angle forward reflected Ne neutral beam" S. D. Park, C. K. Oh, J. W. Bae, G. Y. Yeom, T. W. Kim Appl. Phys. Lett. 89, 043109 (2006)

Stoichiometry Modification of InP Surface

Conditions :

- ICP Etching : Cl₂ (70 sccm)/Ar (30 sccm), 700 W, -100 V, 12 sec
- Atomic Layer Etching : Ne beam irradiation dose (7.2×10¹⁵ atoms/cm²·cycle), Cl₂ pressure (0.4 mTorr), Etch cycle (100 cycle)

"Atomic layer etching of InP using a low angle forward reflected Ne neutral beam" S. D. Park, C. K. Oh, J. W. Bae, G. Y. Yeom, T. W. Kim Appl. Phys. Lett. 89, 043109 (2006)

InGaAs ALE

Conditions :

"Atomic layer etching of InGaAs by controlled ion beam" Jin Woo Park, Doo San Kim, Mu Kyeom Mun, Won Oh Lee, Ki Seok Kim amd Geun Young Yeom Accepted by Journal of Physics D: Applied Physics

InGaAs ALE

Conditions :

Base pressure	2.0×10 ⁻⁶ Torr	Chamber pressure	2.0×10 ⁻⁴ Torr	Inductive power	200 Watts
1 st grid voltage	10 Volts	2 nd grid voltage	-100 Volts	Ar pressure	3.0 mTorr
Ar Irradiation time	50 sccm	Cl ₂ pressure	1.0 mTorr	Cl supply time	10 sec

"Atomic layer etching of InGaAs by controlled ion beam" Jin Woo Park, Doo San Kim, Mu Kyeom Mun, Won Oh Lee, Ki Seok Kim amd Geun Young Yeom Accepted by Journal of Physics D: Applied Physics

Application – InP HEMTs (Gate Recess Process)

Conventional gate recess process : Combination of wet & dry recess etching

- Wet recess : InGaAs cap layer; Citric Acid + $H_2O_2 = 7:1$
- Dry recess : InP etch stop layer; Ar RIE [Ar (50 sccm), 7 W, -65 V, 20 mTorr]

"30 nm gate InAlAs/InGaAs HEMTs lattice-matched to InP substrates"

Tetsuya Suemitsu, Tetsuyoshi Ishii, Haruki Yokoyama, Yohatro Umeda, Takatomo Enoki, Yasunobu Ishii, Toshiaki Tamamura Electron Devices Meeting, (1998). IEDM'98

LAYER

"A Two-Step-Recess Process Based on Atomic-Layer Etching for High-Performance In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As p-HEMTs" Tae-Woo Kim, Geun-Young Yeom, Jae-Hyung Jang, Jong-In Song IEEE TRANSACTIONS ON ELECTRON DEVICES, 55, 7, (2008)

32

Conditions :

- Plasma Etching : Ar (50 sccm), 7 W, -65 V, 20 mTorr, 15 min
- Atomic Layer Etching : Ne beam irradiation dose (7.2×10¹⁵ atoms/cm²·cycle), Cl₂ pressure (0.4 mTorr), Etch cycle (41 cycle)

 $G_{M,Max}$ of the p-HEMTs fabricated by the ALET process was larger than that using Ar-based RIE by 21%

"A Two-Step-Recess Process Based on Atomic-Layer Etching for High-Performance In_{0.52}Al_{0.48}As/In_{0.53}Ga_{0.47}As p-HEMTs" Tae-Woo Kim, Geun-Young Yeom, Jae-Hyung Jang, Jong-In Song IEEE TRANSACTIONS ON ELECTRON DEVICES, 55, 7, (2008)

Contents

Base pressure	3.0×10 ⁻⁷ Torr	Chamber pressure	2.0×10 ⁻⁴ Torr	Inductive power	300 Watts
1 st grid voltage	60 Volts	2 nd grid voltage	-250 Volts	Ar flow rate	30 sccm
Ar beam Irradiation dose	0~2.67×10 ¹⁷ atoms/cm ² ⋅cycle	BCl ₃ pressure	0~0.33 mTorr	BCl ₃ supply time (t _{Cl2})	20 sec

"Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO₂ using BCl₃ and Ar Neutral Beam" S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom Electrochemical and Solid-State Letters, 11 4 H71-H73 (2008)

Base pressure	3.0×10 ⁻⁷ Torr	Chamber pressure	2.0×10 ⁻⁴ Torr	Inductive power	300 Watts
1 st grid voltage	60 Volts	2 nd grid voltage	-250 Volts	Ar flow rate	30 sccm
Ar neutral beam Irradiation dose	1.485×10 ¹⁷ atoms/cm ^{2.} cycle	BCl ₃ pressure	0.33 mTorr	BCl ₃ supply time (t _{Cl2})	20 sec

"Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO₂ using BCl₃ and Ar Neutral Beam" S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom Electrochemical and Solid-State Letters, 11 4 H71-H73 (2008)

Base pressure	5.0×10 ⁻⁷ Torr	Chamber pressure	2.5×10 ⁻⁴ Torr	Inductive power	300 Watts
1 st grid voltage	100 Volts	2 nd grid voltage	-250 Volts	Ar flow rate	50 sccm
BCl ₃ gas flow rate	0~100 scmm	BCl ₃ supply time (t _{Cl2})	30 s	Ar neutral beam Irradiation time	125 sec

"Atomic layer etching of Al₂O₃ using BCl₃/Ar for the interface passivation layer of III–V MOS devices" K.S. Min a, S.H. Kang a, J.K. Kim a,c, Y.I. Jhon b, M.S. Jhon b, G.Y. Yeom Microelectronic Engineering 110, 457–460 (2013)

BeO ALE

Conditions :

Base pressure	5.0×10 ⁻⁷ Torr	Chamber pressure	2.5×10 ⁻⁴ Torr	Inductive power	300 Watts
1 st grid voltage	125 Volts	2 nd grid voltage	-250 Volts	Ar flow rate	50 sccm
BCl ₃ gas flow rate	0~100 scmm	BCl ₃ supply time (t _{Cl2})	30 s	Ar neutral beam Irradiation time	125 sec

"Atomic layer etching of BeO using BCl₃/Ar for the interface passivation layer of III–V MOS devices" K.S. Min, S.H. Kang, J.K. Kim, J.H. Yumg, Y.I. Jhon, Todd W. Hudnall, C.W. Bielawski, S.K. Banerjee, G. Bersuker, M.S. Jhon, G.Y. Yeom Microelectronic Engineering 114, 121–125 (2014)

MOSFET Fabrication with HfO₂ ALE

Convention RIE etcher

Atomic layer etcher

TEM Image of HfO₂ Etched by ALE

Precise etching of HfO₂ on SiO₂ using ALE

: Blank wafer (HfO₂ on SiO₂) etching

Before ALE process

After 30 cycles of ALE

MOSFET IG-VG

However, there are differences in MOSFET (without S/D active region) due to gate oxide edge damage which could be the leakage path in the heterogeneous interface between the high-k dielectric and the capping nitride layer

MOSFET IG-VG

The ALET can minimize the plasma etching damage at the edge of gate oxide.

$I_{\rm G}\text{-}V_{\rm G}$ characteristics of STI edge transistor

 $\rm I_G\text{-}V_G$ characteristics of S/D edge transistor

MOS Parameter - IG

As gate length decrease from 1 um to 100 nm, the gate leakage current is as low as wet etching compared that of plasma etching

Contents

Need for ALE

MoS2, WS2, etc - semicondutor

BN - insulator

"Atomic Level Etching of Poly-Si in a Microwave Electron Cyclotron Resonance Plasma Etcher" Yasushi Sonoda (HITACHI)

• Films getting thinner: slow etch rate is not a problem

- High etch selectivity
 - Negligible etching into underlayer
- Low etch damage and contamination
- Precise control of etch depth in atomic scale

Possible Application of Anistropic ALE

Logic Challenges for 10 nm Node and Beyond

Self-aligned contact

 Polymer pinch off in narrow space etching leading to unlanded contact

SiGe loss Increases contact resistance

 Etch depth loading
Due to large vs. small CD (ARDE)

"Fluorocarbon-based Atomic Layer Etching of Silicon Dioxide for Self-aligned Contact" Eric Hudson (Lam Reserach)

ALE of SiO₂ using ICP with Pulsing Gases

SEMATECH ALET Workshop April 21, 2014

"Fluorocarbon assisted atomic layer etching of SiO₂ using cyclic Ar/C₄F₈ plasma" Dominik MetzlerRobert L. Bruce, Sebastian Engelmann, and Eric A. Joseph **Gottlieb S. Oehrlein** J. Vac. Sci. Technol. A 32, 020603 (2014)

ALE Tool by Lam Research Inc.

Oxide ALE for SAC etch

: Better selectivity and loading

ATOMIC LAYER ETCHING

"Fluorocarbon-based Atomic Layer Etching of Silicon Dioxide for Self-aligned Contact" Eric Hudson (Lam Research)

ALE Tool by Lam Research Inc.

Deposition + Activation cyclic process

: Concept vs. Experiment

"Fluorocarbon-based Atomic Layer Etching of Silicon Dioxide for Self-aligned Contact" Eric Hudson (Lam Research)

SiO₂ ALE using O₂ as Desorption Gas

ALE 2016 Ireland

3rd International Workshop on Atomic Layer Etching 24th - 25th July 2016, Dublin, Ireland "A novel atomic layer etching of SiO₂ with alternating O₂ plasma with fluorocarbon film deposition" **Takayoshi Tsutsumi (Nagoya Uni.)**, Masaru Zaitsu, Akiko Kobayashi, Hiroki Kondo, Toshihisa Nozawa, Nobuyoshi Kobayashi, Masaru Hori

Low Energy E-beam Etch Tool of Applied Materials for ALE

Electron beam-generated plasma etch tool

"Low Damage Etch Chamber for Atomic Precision Etching" L. Dorf, S. Rauf, A. Agarwal, G. Monroy, K. Ramaswamy, K. Collins (Applied Materials)

• Si ALE in chlorine at different ion energies

"Low Damage Etch Chamber for Atomic Precision Etching" L. Dorf, S. Rauf, A. Agarwal, G. Monroy, K. Ramaswamy, K. Collins (Applied Materials)

Cyclic Etch Tool by TEL

One way

: Spatial pulsing with microwave plasma processes

"Modeling and simulation for rapid advanced cyclic etch processes" Peter Ventzek (TEL)

ALE Tool by Hitachi

Gas pulsing process

: Tri-time modulation

- Tri-TM is triadic combination of pulsing techniques, bias plasma and gas pulsing
- Tri-TM process is demonstrated for Fin etching of Si

"Atomic Level Etching of Poly-Si in a Microwave Electron Cyclotron Resonance Plasma Etcher" Yasushi Sonoda (HITACHI)

ALE Tool by Hitachi

: Gas pulsing enables to realize the vertical profile and higher selectivity

Single step process

Continuous process:

Tapered profile

Lower selectivity

Rounding etch front

Gas pulsing process

Gas pulsing process achieves:

- Vertical profile
- Higher selectivity
- Flat etch front

"Atomic Level Etching of Poly-Si in a Microwave Electron Cyclotron Resonance Plasma Etcher" Yasushi Sonoda (HITACHI)

55

Possible Advantage of Neutral Beam instead of Ar Ion Beam?

"Atomic layer etching removal of damaged layers in a contact hole for low sheet resistance" Jong Kyu Kim, Sung II Cho, Sung Ho Lee, Chan Kyu Kim, Kyung Suk Min, and Geun Young Yeom Journal of Vacuum Science & Technology A 31, 061302 (2013)

"Damaged silicon contact layer removal using atomic layer etching for deep-nanoscale semiconductor devices" Jong Kyu Kim, Sung II Cho, Sung Ho Lee, Chan Kyu Kim, Kyung Suk Min, Seung Hyun Kang, and Geun Young Yeom Journal of Vacuum Science & Technology A 31, 061310 (2013)

Possible Advantage of Neutral Beam instead of Ar Ion Beam?

lon Beam	Ref.	흡착	Power	200W
			Cl ₂	1.5mTorr
		3:100£	Ar	2mTorr
Etab profile		<u>nannannan</u> uana	Cycle(time)	500cycle(10-10-10-10)
Etch profile			Grid	10V, -250 V
	54700 15.0x/ 9.3mm x100: 16(1) 41(17 15.20	54700 15.04V 8.5mm x100x 56(5) 471477 10 42 500mm		
Etch depth		110~126 nm		
Neutral Ream	Ref.	흔착	Power	200W
reactar beam			Cl ₂	1.5mTorr
			Ar	2mTorr
CEM			Cycle(time)	500cycle(10-10-35-10)
SEIVI		000000000000000000	Grid	10V, -250 V
		5/70 15 04/ 8 Jawa 4905 5653 45/17 16/2		
	54700 15-0kV 9-3imm x100k 30((v) 401(17 15-20 500mm			

Etch selectivity improved by over 60 % with low-damage plasma source

Contents

Summary

Continuous Etch

- Maintain constant gas and RF power
- Recipe steps typically >10 sec

RF Pulsing

- Rapid variation in RF power to plasma
- Many different process benefits
- Bias pulsing modulates ion energy, effectively decouples ion energy control from gas neutral chemistry

Gas Pulsing

- Rapid variation of gas mixture delivered to reactor
- Generally slower than RF pulsing
- Synchronize gases to RF power (bias) to enable processes of atomic layer etching
- Neutral Beam ? What else ?

Properties of ALE

Wide process window

Theoretical Uniformity : 0.0 %

