2017. 07. 15. Geun Young Yeom School of Advanced Materials Science and Engineering Sungkyunkwan University (SKKU), Korea Atomic Layer Etching with Ion/Neutral Beams ALE 2017 Tutorial 2 Contents ALE of Various Materials (Si, III-V Compounds, High-k Dielectirics) Recent Research Trends Summary Introduction of Atomic Layer Etching with Ion/Neutral Beam 4 ALE Technology 1 Step Etchant Adsorption 2 Step Etchant Purge Energetic Particle (photon/ion) Irradiation ① Etchant Feed ③ Plasma Irradiation ④ Etch Products Purge  Concept of ALET Plasma ② Etchant Purge 3 Step Etch Product Desorption 4 Step Etch Product Purge 1 Cycle Mechanism of ALE 4  Chemisorption of Cl2 on materials Dissociative Langmuir isotherm chemisorption : PCl2 k1 k2 Sputtering of MCl by Ar bombardment: where, k1 : adsorption rate constant (Pas)-1 k2 : desorption rate constant (s)-1 PCl2 : Cl2 pressure (Pa) Sputtering rate of Cl-adsorbed Material (MCl) : )()()(2 22 1 ad k adg MClMCl  2 2 1 1 1 Cl Cl MCl Pk Pk   Coverage of the MCl precursor : )( , )( 2 g Ark ad MClMCl neu   neuArMClMCl fkf 2 2 2 2 1 )1( ClMCl MCl P k      Desorption of chemisorbed materials by Ar+ bombardment Adsorption Condition for ALE  Irreversible saturation: - Required for ALE Surface saturates with a m onolayer of precursor, stron g chemisorption (=chemical bonds formed)  Reversible saturation: Physisorption only (weak bon ds like van der Waals): once precursor flux is stopped, surf ace specie will desorb.  Irreversible non-saturation: Physisorption multila yers and continuous deposition Stop gas flow 5 Stop gas flow Stop gas flow Adsorption and Reaction at Surfaces 6 Physisorption Chemisorption weak, long range bonding Van der Waals interactions strong, short range bonding Chemical bonding involving orbital overlap and Charge transfer Not surface specific Surface specific ΔHads = 5~50 kJ/mol ΔHads = 50~500 kJ/mol No surface reaction Surface reactions may take place Dissociation, reconstruction, catalysis Multilayer adsorption BET Isotherm used to model adsorption equilibrium Monolayer adsorption Langmuir Isotherm used to model adsorption equilibrium First Principle Study of Al2O3 ALE 7  Adsorption Configuration Ah-EC Ah-TR At-EC AT-TR Energy (Kcal/mol) -32.293 -32.142 -15.347 -17.574 Configuration Oh-EC Oh-TR Ot-EC Ot-TR Energy (Kcal/mol) -32.633 -31.707 -45.617 -58.986 *: significant electron population change upon the BCl3 adsorption Cl B Al O Ot-TR configuration led to the most stable BCl3 adsorption with an adsorption energy of 58.99 Kcal/mol “Understanding time-resolved processes in atomic-layer etching of ultra-thin Al2O3 film using BCl3 and Ar neutral beam” Young I. Jhon, Kyung S. Min, G. Y. Yeom, and Young Min Jhon Appl. Phys. Lett. 105, 093104 (2014) Sputter Rate of Silicon in a Cl2 Environment 8 (8%) (84%) (8%) “Near threshold sputtering of Si and SiO2 in a Cl2 environment” D. J. Oostra, R. P. van Ingen, A. Haring, and A. E. de VriesG. N. A. van Veen Appl. Phys. Lett. 50, 1506 (1987) “Molecular dynamics simulation of atomic layer etching of silicon” Satish D. Athavale and Demetre J. Economou J. Vac. Sci. Technol. A 13 (2) (1995)  Average product yield Si ALE as a function of Ar Beam Energy 9 Below about 50 eV of energy, the chemical etching is found to be more dominant than the physical sputtering. Etch rate increase by Ar energy (Threshold E < 50 eV) Base pressure 2.0 × 10-6 Torr Operating pressure 4.0 × 10-4 Torr Cl2 partial pressure 10 mPa tCl2 20 sec tAr+ 5 sec Ar flow rate 40 sccm RF power 50 W Ion acceleration voltage 40 ~ 150 V 0 20 40 60 80 100 120 140 160 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 6 8 10 12 14 1/2 monolayer EtchDepth(Å/halfcycle) Ar Neutral Beam Energy (eV) 0.68 Si ALE as a function of Etch Parameters 10  Use time domain to simplify “Overview of atomic layer etching in the semiconductor industry” Keren J. Kanarik, Thorsten Lill, Eric A. Hudson, Saravanapriyan Sriraman, Samantha Tan, Jeffrey Marks, Vahid Vahedi, and Richard A. Gottscho J. Vac. Sci. Technol. A 33 (020802) (2015) First Principle Study of Al2O3 ALE 11  Desorption “Understanding time-resolved processes in atomic-layer etching of ultra-thin Al2O3 film using BCl3 and Ar neutral beam” Young I. Jhon, Kyung S. Min, G. Y. Yeom, and Young Min Jhon Appl. Phys. Lett. 105, 093104 (2014) Threshold Energy for Sputtering 12 Si SiO2  Ion energy control is essential to enable atomic scale precision  Energy threshold chosen specifically to enable reactant activation and removal of one material selective to all others “Atomic Layer Etching at the Tipping Point: An Overview” G. S. Oehrlein, D. Metzler, and C. Li ECS Journal of Solid State Science and Technology, 4 (6) N5041-N5053 (2015) “Sputtering Yields at Very Low Bombarding Ion Energies” R. V. Stuart and G. K. Wehner Journal of Applied Physics, 7 (33) (1962) Energy Control of Energetic Particles for Desorption 13 1) Ion mass 2) Frequency  Energy distribution of the ions incident to the electrode by the above oscillation 500 eV Ar+ : velocity = 5 × 106 cm/sec It takes 400 ns for the movement of 2 cm Oscillation period at 13.56MHz 1 13.56 10 74 ∴ During the pass of sheath, the incident ions oscillate for a few times + 2cm maxmin Energy Control of Energetic Particles for Desorption 14  Novel plasma pulsing methods (waveforms) can be used to tailor ion energy distribution function “Control of ion energy distribution at substrates during plasma processing” S.-B. Wang and A. E. Wendt Journal of Applied Physics 88, 643 (2000) “Atomic layer etching with pulsed plasmas” Vincent M. DONNELLY, Demetre J, and ECONOMOU US 20110139748A1, 2011 Formation of Energetic Neutral Beam 15 When the ion beam was reflected by a reflector at the angles lower than 15º, most of the ions reflected were neutralized and the lower reflector angle showed the higher degree of neutralization.  Ion-surface neutralization 16 Contents Introduction of Atomic Layer Etching (ALE) with Ion/Neutral Beam ALE of Various Materials (Si, III-V Compounds, High-k Dielectirics) Recent Research Trends Summary ALE using ECR Ion Source 17 CF4/O2 “Digital chemical vapor deposition and etching technologies for semiconductor processing” Y. Horiike, T. Tanaka, M. Nakano, S. Iseda, H. Sakaue, A. Nagata, H. Shindo, S. Miyazaki, and M. Hirose J. Vac. Sci. Techno!. A 8 (3) (1990) ALE of Si using Low Energy Ion (ECR) 18 “Selflimited layerbylayer etching of Si by alternated chlorine adsorption and Ar+ ion irradiation” Takashi Matsuura, Junichi Murota, Yasuji Sawada, and Tadahiro Ohmi Appl. Phys. Lett. 63 (20) (1993) ALE using Helical Plasma Source 19 “Realization of atomic layer etching of silicon” Satish D. Athavale and Demetre J. Economou J. Vac. Sci. Technol. B 14(6) (1996)  Conditions : Si ALE 20 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.4 0.8 1.2 1.6 2.0 (100) (111) (100) (111) 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Cl2 Pressure (mTorr) EtchRate(Å/cycle) RMSRoughness(Å) 1.57 Å/cycle 1.36 Å/cycle 0.0 0.4 0.8 1.2 1.6 2.0 2.4 0.0 0.4 0.8 1.2 1.6 2.0 (100) (111) (100) (111) 0 1 2 3 4 5 6 7 8 9 Ar Beam Irradiation Dose (×1015 atoms/cm2·cycle) EtchRate(Å/cycle) RMSRoughness(Å) 1.57 Å/cycle 1.36Å/cycle Base pressure 2.0×10-6 Torr Chamber pressure 2.5×10-4 Torr Inductive power 800 Watts Acceleration voltage 50 Volts Ar flow rate 10 sccm Ar beam irradiation dose 0~2.587×1015 atoms/cm2·cycle Cl2 pressure 0~0.67 mTorr Cl2 supply time (tCl2) 20 sec Cycle 75 cycle “Surface Roughness Variation during Si Atomic Layer Etching by Chlorine Adsorption Followed by an Ar Neutral Beam Irradiation” S. D. Park, C. K. Oh, D. H. Lee, and G. Y. Yeom Electrochemical and Solid-State Letters, 8 11 C177-C179 (2005) Etch Residue 21  Conditions :  ICP Etching : BCl3 (50 sccm)/Ar (50 sccm), 300 W, -60 V, 12 mTorr, 149 sec  Atomic Layer Etching : Ne beam irradiation dose (1.485×1017 atoms/cm2·cycle), BCl3 pressure (0.33 mTorr), Etch cycle (217 cycle) “Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO2 using BCl3 and Ar Neutral Beam” S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom Electrochemical and Solid-State Letters, 11 4 H71-H73 (2008) 22 Contents Introduction of Atomic Layer Etching (ALE) with Ion/Neutral Beam ALE of Various Materials (Si, III-V Compounds, High-k Dielectirics) Recent Research Trends Summary GaAs ALE using ECR Source 23 Layer by layer etching with the etch rate in the range of 0.5 nm/cycle has been achieved on GaAs. “Controllable layerbylayer etching of III–V compound semiconductors with an electron cyclotron resonance source” K. K. Ko and S. W. Pang J. Vac. Sci. Techno!. B 11(6) (1993) GaAs ALE 24  Conditions : Base pressure 3.0×10-7 Torr 1st grid voltage 10 Volts Cl2 pressure 0~0.62 mTorr Chamber pressure 2.0×10-4 Torr 2nd grid voltage -250 Volts Ne beam Irradiation dose 0 ~ 4.55×1016 atoms/cm2·cycle Inductive power 300 Watts Ne flow rate 70 sccm Cl2 supply time (tCl2) 10 sec Cl2 gas pressure (mTorr) Etchrate(Å/cycle) RMSroughness(Å) 1.63 Å/cycle 1.41 Å/cycle 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.0 0.5 1.0 1.5 2.0 2.5 GaAs (100) GaAs (111) 1 2 3 4 5 6 7 8 9 “Atomic layer etching of (100)/(111) GaAs with chlorine and low angle forward reflected Ne neutral beam” Woong Sun Lim, Sang Duk Park, Byoung Jae Park, Geun Young Yeom Surface & Coatings Technology 202, 5701–5704 (2008) Stoichiometry Modification of GaAs Surface 25  Conditions : Base pressure 3.0×10-7 Torr 1st grid voltage 10 Volts Cl2 pressure 0.4 mTorr Chamber pressure 2.0×10-4 Torr 2nd grid voltage -250 Volts Ne neutral beam Irradiation dose 3.03×1016 atoms/cm2·cycle Inductive power 300 Watts Ne flow rate 70 sccm Cl2 supply time (tCl2) 10 sec Inductive power 700 Watts Etch time 12sec D.C bias voltage -100 Volts Gas pressure 12 mTorr [Cl2(70sccm)/Ar(30sccm)] ALET ICP 0 20 40 60 80 0.4 0.6 0.8 1.0 Atomicpercent(%) As/Garatio Ga As Reference ALET ICP As/Ga ratio XPS take off angle: 50° 40 60 80 100 120 140 160 180 200 0 50 100 150 200 250 300 350 GaAs (100) GaAs (111) 0.0 0.5 1.0 1.5 2.0 2.5 1 2 3 4 5 6 7 Number of etch cycle Etchrate(Å/cycle) RMSroughness(Å) Etchdepth(Å) “Atomic layer etching of (100)/(111) GaAs with chlorine and low angle forward reflected Ne neutral beam” Woong Sun Lim, Sang Duk Park, Byoung Jae Park, Geun Young Yeom Surface & Coatings Technology 202, 5701–5704 (2008) InP ALE 26  Conditions : 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.0 0.5 1.0 1.5 2.0 2.5 (100) (100) (111) (111) 1 2 3 4 5 1.69 Å/cycle 1.47 Å/cycle Cl2 Pressure (mTorr) EtchRate(Å/cycle) RMSRoughness(Å) 0 2 4 6 8 10 12 0.0 0.5 1.0 1.5 2.0 2.5 (100) (100) (111) (111) 0 2 4 6 8 10 1.69 Å/cycle 1.47 Å/cycle Ne Beam Irradiation Dose (×1015 atoms/cm2·cycle) EtchRate(Å/cycle) RMSRoughness(Å) Base pressure 3.0×10-7 Torr Chamber pressure 8.9×10-5 Torr Inductive power 300 Watts 1st grid voltage 5 Volts 2nd grid voltage -250 Volts Ne flow rate 70 sccm Ne neutral beam irradiation dose 0~10.6×1015 atoms/cm2·cycl e Cl2 pressure 0~0.62 mTorr Cl2 supply time (tCl2) 10 sec “Atomic layer etching of InP using a low angle forward reflected Ne neutral beam” S. D. Park, C. K. Oh, J. W. Bae, G. Y. Yeom, T. W. Kim Appl. Phys. Lett. 89, 043109 (2006) Stoichiometry Modification of InP Surface 27  Conditions :  ICP Etching : Cl2 (70 sccm)/Ar (30 sccm), 700 W, -100 V, 12 sec  Atomic Layer Etching : Ne beam irradiation dose (7.2×1015 atoms/cm2·cycle), Cl2 pressure (0.4 mTorr), Etch cycle (100 cycle) 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 P peak As-is In peak Atomic Layer Etching C peak Conventional ICP Etching 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Θ (take-off angle) AtomicPercent(%) P/InRatio “Atomic layer etching of InP using a low angle forward reflected Ne neutral beam” S. D. Park, C. K. Oh, J. W. Bae, G. Y. Yeom, T. W. Kim Appl. Phys. Lett. 89, 043109 (2006) InGaAs ALE 28 Pristine 2.5 5 7.5 10 12.5 15 17.5 20 0 10 20 30 40 50 Cl Adsorption Time (sec) In:Ga:AsAtomicPercentage(%) Saturated Cl At% about 16% In Ga As Cl 0 5 10 15 20 25 30 ClAtomicPercentage(%) 0 10 30 50 0 20 40 60 80 100 (a)Ar + Ion Exposure Time : 50 (sec/cycle) × 100 Cycles Acceleration Grid Voltage (V) EtchDepth(Å) “Atomic layer etching of InGaAs by controlled ion beam” Jin Woo Park, Doo San Kim, Mu Kyeom Mun, Won Oh Lee, Ki Seok Kim amd Geun Young Yeom Accepted by Journal of Physics D: Applied Physics  Conditions : Base pressure 2.0×10-6 Torr Chamber pressure 2.0×10-4 Torr Inductive power 200 Watts 1st grid voltage 10 Volts 2nd grid voltage -100 Volts Cl2 pressure 1.0 mTorr Ar pressure 3.0 mTorr Cl supply time 10 sec Ar Irradiation time 50 sccm InGaAs ALE 29  Conditions : Base pressure 2.0×10-6 Torr Chamber pressure 2.0×10-4 Torr Inductive power 200 Watts 1st grid voltage 10 Volts 2nd grid voltage -100 Volts Ar pressure 3.0 mTorr Ar Irradiation time 50 sccm Cl2 pressure 1.0 mTorr Cl supply time 10 sec 0 10 20 30 40 50 60 70 80 90 100 0 50 100 150 200 InGaAs Si SiO2 HfO2 PR ACL Ar + Ion Exposure Time (sec/cycle) EtchDepth(Å) 0.0 0.5 1.0 1.5 2.0 EtchRate(Å/Cycle) 100 200 300 400 100 200 300 400 500 EtchRate(Å/Cycle) No. of ALE Cycles EtchDepth(Å) 0.6 0.8 1.0 1.2 1.4 1.6 “Atomic layer etching of InGaAs by controlled ion beam” Jin Woo Park, Doo San Kim, Mu Kyeom Mun, Won Oh Lee, Ki Seok Kim amd Geun Young Yeom Accepted by Journal of Physics D: Applied Physics Application – InP HEMTs (Gate Recess Process) 30  Wet recess : InGaAs cap layer; Citric Acid + H2O2 = 7:1  Dry recess : InP etch stop layer; Ar RIE [Ar (50 sccm), 7 W, -65 V, 20 mTorr] “30 nm gate InAlAs/InGaAs HEMTs lattice-matched to InP substrates” Tetsuya Suemitsu, Tetsuyoshi Ishii, Haruki Yokoyama, Yohatro Umeda, Takatomo Enoki, Yasunobu Ishii, Toshiaki Tamamura Electron Devices Meeting, (1998). IEDM'98  Conventional gate recess process : Combination of wet & dry recess etching InAlAs Buffer S.I. InP Substrate InGaAs Channel Ohmic contact : Ti/PtAu n+ InGaAs cap layer (30 nm) InP etch stop layer (6 nm) I - InAlAs Schottky layer (8 nm) Si d-doping plane I - InAlAs spacer layer (3 nm) InP HEMTs (Gate Recess Process) 31  Conditions : Base pressure 3.0×10-7 Torr Chamber pressure 2.0×10-4 Torr Inductive power 300 Watts 1st grid voltage 5 Volts 2nd grid voltage -250 Volts Ne flow rate 70 sccm Ne neutral beam Irradiation dose 7.2×1015 atoms/cm2·cycle Cl2 pressure 0.4 mTorr Cl2 supply time (tCl2) 10 sec EtchDepth(Å) 0 50 100 150 200 0 50 100 150 200 250 300 350 Number of Etch Cycles InP Bulk InP (80Å)/InAlAs Structure AEPSE 2013 “A Two-Step-Recess Process Based on Atomic-Layer Etching for High-Performance In0.52Al0.48As/In0.53Ga0.47As p-HEMTs” Tae-Woo Kim, Geun-Young Yeom, Jae-Hyung Jang, Jong-In Song IEEE TRANSACTIONS ON ELECTRON DEVICES, 55, 7, (2008) 60 nm Depletion Mode InP HEMT 32  Conditions :  Plasma Etching : Ar (50 sccm), 7 W, -65 V, 20 mTorr, 15 min  Atomic Layer Etching : Ne beam irradiation dose (7.2×1015 atoms/cm2·cycle), Cl2 pressure (0.4 mTorr), Etch cycle (41 cycle) GM,Max of the p-HEMTs fabricated by the ALET process was larger than that using Ar-based RIE by 21% DC Characteristics RF Characteristics “A Two-Step-Recess Process Based on Atomic-Layer Etching for High-Performance In0.52Al0.48As/In0.53Ga0.47As p-HEMTs” Tae-Woo Kim, Geun-Young Yeom, Jae-Hyung Jang, Jong-In Song IEEE TRANSACTIONS ON ELECTRON DEVICES, 55, 7, (2008) 33 Contents Introduction of Atomic Layer Etching (ALE) with Ion/Neutral Beam ALE of Various Materials (Si, III-V Compounds, High-k Dielectirics) Recent Research Trends Summary HfO2 ALE 34  Conditions : Base pressure 3.0×10-7 Torr Chamber pressure 2.0×10-4 Torr Inductive power 300 Watts 1st grid voltage 60 Volts 2nd grid voltage -250 Volts Ar flow rate 30 sccm Ar beam Irradiation dose 0~2.67×1017 atoms/cm2·cycle BCl3 pressure 0~0.33 mTorr BCl3 supply time (tCl2) 20 sec BCl3 Pressure (mTorr) EtchRate(Å/cycle) RMSRoughness(Å) 1. 2 Å/cycle -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.0 0.3 0.6 0.9 1.2 1.5 1.8 10 20 30 40 50 60 70 80 90 0 5 10 15 20 25 30 0.0 0.3 0.6 0.9 1.2 1.5 1.8 10 20 30 40 50 60 70 80 EtchRate(Å/cycle) RMSRoughness(Å) 1.2 Å/cycle Ar Beam Irradiation Dose (×1016 atoms/cm2·cycle) “Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO2 using BCl3 and Ar Neutral Beam” S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom Electrochemical and Solid-State Letters, 11 4 H71-H73 (2008) HfO2 ALE 35  Conditions : Base pressure 3.0×10-7 Torr Chamber pressure 2.0×10-4 Torr Inductive power 300 Watts 1st grid voltage 60 Volts 2nd grid voltage -250 Volts Ar flow rate 30 sccm Ar neutral beam Irradiation dose 1.485×1017 atoms/cm2·cycle BCl3 pressure 0.33 mTorr BCl3 supply time (tCl2) 20 sec Number of Etch Cycles EtchDepth(Å) EtchRate(Å/cycle) RMSRoughness(Å) 50 100 150 200 250 300 0.0 0.3 0.6 0.9 1.2 1.5 1.8 50 100 150 200 250 300 350 400 10 15 20 25 30 35 40 45 50 “Precise Depth Control and Low-Damage Atomic-Layer Etching of HfO2 using BCl3 and Ar Neutral Beam” S. D. Park, W. S. Lim, B. J. Park, H. C. Lee, J. W. Bae, and G. Y. Yeom Electrochemical and Solid-State Letters, 11 4 H71-H73 (2008) Al2O3 ALE 36  Conditions : Base pressure 5.0×10-7 Torr Chamber pressure 2.5×10-4 Torr Inductive power 300 Watts 1st grid voltage 100 Volts 2nd grid voltage -250 Volts Ar flow rate 50 sccm BCl3 gas flow rate 0~100 scmm BCl3 supply time (tCl2) 30 s Ar neutral beam Irradiation time 125 sec 50 75 100 125 150 0.0 0.5 1.0 1.5 2.0 Region 3Region 2Region 1 SuputterRate(Å/cycle) 1 st Grid Voltage (V) 0.0 0.5 1.0 1.5 2.0 EtchRate(Å/cycle) 0 25 50 75 100 0.00 0.25 0.50 0.75 1.00 1.25 One monolayer (0.95 - 1.05 Å / cycle) EtchRate(Å/cycle) Gas Flow Rate (sccm) 10 20 30 40 50 SurfaceRoughness(Å) “Atomic layer etching of Al2O3 using BCl3/Ar for the interface passivation layer of III–V MOS devices” K.S. Min a, S.H. Kang a, J.K. Kim a,c, Y.I. Jhon b, M.S. Jhon b, G.Y. Yeom Microelectronic Engineering 110, 457–460 (2013) BeO ALE 37  Conditions : Base pressure 5.0×10-7 Torr Chamber pressure 2.5×10-4 Torr Inductive power 300 Watts 1st grid voltage 125 Volts 2nd grid voltage -250 Volts Ar flow rate 50 sccm BCl3 gas flow rate 0~100 scmm BCl3 supply time (tCl2) 30 s Ar neutral beam Irradiation time 125 sec 50 100 150 200 250 50 100 150 200 EtchRate(Å/min) EtchRate(Å/cycles) Number of Atomic Layer Etch Cycles 0.25 0.50 0.75 1.00 1.25 1.50 1.75 0 25 50 75 100 0.00 0.25 0.50 0.75 1.00 Ar 125(v) 250(s) One monolayer (0.7 - 0.8 Å / cycle) EtchRate(Å/cycle) Gas Flow Rate (sccm) “Atomic layer etching of BeO using BCl3/Ar for the interface passivation layer of III–V MOS devices” K.S. Min, S.H. Kang, J.K. Kim, J.H. Yumg, Y.I. Jhon, Todd W. Hudnall, C.W. Bielawski, S.K. Banerjee, G. Bersuker, M.S. Jhon, G.Y. Yeom Microelectronic Engineering 114, 121–125 (2014) MOSFET Fabrication with HfO2 ALE 38  Main etch challenges  Gate dimensions down to less than 30 nm  CD control better than 2 nm required  Low silicon recess (~ 1 nm) HfO2 TiN Over etching Etch residue Charge trap in oxide layer HfO2 TiN Precise depth control No etch residue No charging damage Convention RIE etcher Atomic layer etcher “Atomic layer etching of ultra-thin HfO2 film for gate oxide in MOSFET devices” Jae Beom Park, Woong Sun Lim, Byoung Jae Park, Ih Ho Park, Young Woon Kim and Geun Young Yeom J. Phys. D: Appl. Phys. 42, 055202 (2009) Silicon Gate Oxide (HfO2) Metal (TiN) Poly-Si Mask (TEOS) Silicon Gate Oxide (HfO2) Metal (TiN) Poly-Si Mask (TEOS) After etch TEM Image of HfO2 Etched by ALE 39 HfO2 SiO2 Si Glue Before ALE process 3.5 nm 1.7 nm Si SiO2 Glue After 30 cycles of ALE 1.6 nm  Precise etching of HfO2 on SiO2 using ALE : Blank wafer (HfO2 on SiO2) etching “Atomic layer etching of ultra-thin HfO2 film for gate oxide in MOSFET devices” Jae Beom Park, Woong Sun Lim, Byoung Jae Park, Ih Ho Park, Young Woon Kim and Geun Young Yeom J. Phys. D: Appl. Phys. 42, 055202 (2009) MOSFET IG-VG 40 However, there are differences in MOSFET (without S/D active region) due to gate oxide edge damage which could be the leakage path in the heterogeneous interface between the high-k dielectric and the capping nitride layer “Atomic layer etching of ultra-thin HfO2 film for gate oxide in MOSFET devices” Jae Beom Park, Woong Sun Lim, Byoung Jae Park, Ih Ho Park, Young Woon Kim and Geun Young Yeom J. Phys. D: Appl. Phys. 42, 055202 (2009) MOSFET IG-VG 41 JG (A/cm 2 ) -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 10 -7 10 -5 10 -3 10 -1 10 1 G (a)NMOSCAP Area = 2x10 -5 cm 2 WE RIE ALE PMOSCAP Area = 2x10 -5 cm 2 VG (V) -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 10 -7 10 -5 10 -3 10 -1 10 1 (b) NMOSFET W / L = 10m / 1.0m G S D WE RIE ALEJ(A/cm 2 ) VG (V) IG-VG characteristics of STI edge transistor IG-VG characteristics of S/D edge transistor The ALET can minimize the plasma etching damage at the edge of gate oxide. “Atomic layer etching of ultra-thin HfO2 film for gate oxide in MOSFET devices” Jae Beom Park, Woong Sun Lim, Byoung Jae Park, Ih Ho Park, Young Woon Kim and Geun Young Yeom J. Phys. D: Appl. Phys. 42, 055202 (2009) Silicon Gate Oxide Metal Gate Poly-Si Gate Stack Reference Antenna Structure MOSFET No Antenna Plate Type Comb Type MOSFET Device as a function of Gate Length 42  MOS Parameter - IG As gate length decrease from 1 um to 100 nm, the gate leakage current is as low as wet etching compared that of plasma etching “Atomic layer etching of ultra-thin HfO2 film for gate oxide in MOSFET devices” Jae Beom Park, Woong Sun Lim, Byoung Jae Park, Ih Ho Park, Young Woon Kim and Geun Young Yeom J. Phys. D: Appl. Phys. 42, 055202 (2009) 43 Contents Introduction of Atomic Layer Etching (ALE) with Ion/Neutral Beam ALE of Various Materials (III-V Compounds, High-k Dielectirics) Recent Research Trends Summary Need for ALE 44  Films getting thinner: slow etch rate is not a problem  High etch selectivity ∙ Negligible etching into underlayer  Low etch damage and contamination  Precise control of etch depth in atomic scale “Atomic Level Etching of Poly-Si in a Microwave Electron Cyclotron Resonance Plasma Etcher” Yasushi Sonoda (HITACHI) Possible Application of Anistropic ALE 45 Gate etch Contact etch Dummy/Sacrificial layer removal 2D-materials 46 “Fluorocarbon-based Atomic Layer Etching of Silicon Dioxide for Self-aligned Contact” Eric Hudson (Lam Reserach) Logic Challenges for 10 nm Node and Beyond  Self-aligned contact ALE of SiO2 using ICP with Pulsing Gases 47 “Fluorocarbon assisted atomic layer etching of SiO2 using cyclic Ar/C4F8 plasma” Dominik MetzlerRobert L. Bruce, Sebastian Engelmann, and Eric A. Joseph Gottlieb S. Oehrlein J. Vac. Sci. Technol. A 32, 020603 (2014) SEMATECH ALET Workshop April 21, 2014 ALE Tool by Lam Research Inc. 48 “Fluorocarbon-based Atomic Layer Etching of Silicon Dioxide for Self-aligned Contact” Eric Hudson (Lam Research)  Oxide ALE for SAC etch : Better selectivity and loading ALE Tool by Lam Research Inc. 49  Deposition + Activation cyclic process : Concept vs. Experiment “Fluorocarbon-based Atomic Layer Etching of Silicon Dioxide for Self-aligned Contact” Eric Hudson (Lam Research) SiO2 ALE using O2 as Desorption Gas 50 “A novel atomic layer etching of SiO2 with alternating O2 plasma with fluorocarbon film deposition” Takayoshi Tsutsumi (Nagoya Uni.), Masaru Zaitsu, Akiko Kobayashi, Hiroki Kondo, Toshihisa Nozawa, Nobuyoshi Kobayashi, Masaru Hori CxFy film SiO2 Substrate Fluorocarbon plasma Ar plasma C-C Ar+ COy SiF2 or SiF4 CxFy film SiO2 Substrate Ar/C4F8 plasma O2 plasma Ox + COy SiF2 or SiF4  Advantage  To remove extra carbon such as CO or CO2, COFx during ALE  To maintain clean chamber by O2 plasma process Step 1 Step 2 Step 1 Step 2 Low Energy E-beam Etch Tool of Applied Materials for ALE 51  Electron beam-generated plasma etch tool “Low Damage Etch Chamber for Atomic Precision Etching” L. Dorf, S. Rauf, A. Agarwal, G. Monroy, K. Ramaswamy, K. Collins (Applied Materials) Low Energy E-beam Etch Tool of Applied Materials for ALE 52 “Low Damage Etch Chamber for Atomic Precision Etching” L. Dorf, S. Rauf, A. Agarwal, G. Monroy, K. Ramaswamy, K. Collins (Applied Materials)  Si ALE in chlorine at different ion energies 53 Cyclic Etch Tool by TEL “Modeling and simulation for rapid advanced cyclic etch processes” Peter Ventzek (TEL)  One way : Spatial pulsing with microwave plasma processes  Allows access to an energy range where chemistry can be done on a surface and the sub-surface left pristine ECS Bias 13.56 MHz Plasma diffusion region Plasma generation region Microwave (2.45 GHz) Z 54 ALE Tool by Hitachi “Atomic Level Etching of Poly-Si in a Microwave Electron Cyclotron Resonance Plasma Etcher” Yasushi Sonoda (HITACHI)  Gas pulsing process : Tri-time modulation A: Etch B: Depo C: Purge Si Cl2-based plasma O2-based plasma Ar plasma SiN Mask Depo film A: Etch  Cl2-based Si etch step  Bias & Plasma pulsing B: Depo  O2-based passivation step C: Purge  Ar purge step  Tri-TM is triadic combination of pulsing techniques, bias plasma and gas pulsing  Tri-TM process is demonstrated for Fin etching of Si 55 ALE Tool by Hitachi “Atomic Level Etching of Poly-Si in a Microwave Electron Cyclotron Resonance Plasma Etcher” Yasushi Sonoda (HITACHI)  Results: Gas pulsing process : Gas pulsing enables to realize the vertical profile and higher selectivity Single step process Gas pulsing process A: Etch A: Etch B: Depo C: Purge Continuous process:  Tapered profile  Lower selectivity  Rounding etch front Gas pulsing process achieves:  Vertical profile  Higher selectivity  Flat etch front *Specification of etching sample - L/S 1:1 32 nmDP - SiN-HM (60 nm)/Si Possible Advantage of Neutral Beam instead of Ar Ion Beam? 56 50 100 150 200 100 150 200 250 300 350 0 to 50 50 to 100 100 to 150 150 to 200 EtchDepth(Å) Number of Cycles (b) 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 EtchRate(Å/cycle)per50cycle Ref Damaged CF₄ CF₄ +5cy CF₄ +10cy 100cy 1.1 1.2 1.3 1.4 1.5 1.6 (b) 1.27 1.29 1.31 1.37 1.42 SheetResistance(x100Ω/□) Experimental Condition 1.24 ALE condition “Damaged silicon contact layer removal using atomic layer etching for deep-nanoscale semiconductor devices” Jong Kyu Kim, Sung Il Cho, Sung Ho Lee, Chan Kyu Kim, Kyung Suk Min, Seung Hyun Kang, and Geun Young Yeom Journal of Vacuum Science & Technology A 31, 061310 (2013) “Atomic layer etching removal of damaged layers in a contact hole for low sheet resistance” Jong Kyu Kim, Sung Il Cho, Sung Ho Lee, Chan Kyu Kim, Kyung Suk Min, and Geun Young Yeom Journal of Vacuum Science & Technology A 31, 061302 (2013) Possible Advantage of Neutral Beam instead of Ar Ion Beam? Etch selectivity improved by over 60 % with low-damage plasma source 57 58 Contents Introduction of Atomic Layer Etching (ALE) with Ion/Neutral Beam ALE of Various Materials (III-V Compounds, High-k Dielectirics) Recent Research Trends Summary Summary 59 Gas Gas Gas Power Power Power Continuous etch RF Bias Pulsing Cycle time ~0.1-10 ms Gas Pulsing (ALE) Cycle time ~0.1-10 sec Time  Continuous Etch  Maintain constant gas and RF power  Recipe steps typically >10 sec  RF Pulsing  Rapid variation in RF power to plasma  Many different process benefits  Bias pulsing modulates ion energy, effectively decouples ion energy control from gas neutral chemistry  Gas Pulsing  Rapid variation of gas mixture delivered to reactor  Generally slower than RF pulsing  Synchronize gases to RF power (bias) to enable processes of atomic layer etching  Neutral Beam ? What else ? Properties of ALE 60 Theoretical Uniformity : 0.0 %Wide process window