Short course "Diamond as a messenger from the Earth's interior: natural samples and experiment" Part 1: Diamond: properties, occurrence, methods of study

Vana Fedortchouk Department of Earth Sciences, Dalhousie University Halifax, Canada (yana@dal.ca)

Outline

- Why do we study diamonds? What makes it a unique mineral?
 - age, occurrence, properties
- Where do we find diamonds?
 - Primary sources (kimberlites, lamproites) and placers
 - Unconventional diamond sources
 - Ultra-high pressure metamorphic rocks
- What can we learn from diamonds?
- Review of diamond properties and modern analytical techniques used in diamond studies
 - Composition (impurities) nitrogen
 - Carbon and nitrogen isotopes
 - Inclusions: mineral and fluid
 - Age dating

Why do we study diamonds? What makes it a unique mineral?

Age ranges (in Ma) of diamond deposits, diamond-bearing rocks, and diamond inclusion minerals.

Gurney et al. (2010)

Chemistry and structure

+ Actinide Series

Simple chemistry & compact structure,

Fm

- The hardest mineral
- Chemically and mechanically stable:
 - during long history in the mantle
 - During transportation in magma
 - In surface environment

Graphite

Carbon in the Earth

Where do we find diamonds?

From Tappert and Tappert (2011), Day (2012)

Where do we find diamonds?

Diamond primary sources

Unconventional diamond sources Headless placer diamond deposits:

Kalimantan diamonds:

Unconventional diamond sources

Ultra-high pressure rocks

Ultra-high pressure rocks

Discovery of diamond-bearing granulites in Eger Crystalline Complex of North Bohemian Massif

P-T evolution of garnet-clinopyroxene UHP rocks from the North Bohemian Massif, Dabie-Sulu, the Kokchetav Massif, and the German Erzgebirge.

What can we learn from diamonds?

- $_{\odot}$ Processes in the Earth mantle
- \circ Evolution of mantle processes through time
- Multiple diamond-growth events, sampling of different stages of mantle history (variable age of kimberlites) – snap-shots

Review of diamond properties and modern analytical techniques used in diamond studies

- Composition (impurities) nitrogen
- Carbon and nitrogen isotopes
- Inclusions: mineral and fluid
- Age estimates

Nitrogen impurities in diamond

(Average 300 ppm, up to 0.2%)

Nitrogen impurities in diamond

From Shirey and Shingley (2013)

Fluid inclusions

K+Na (saline) Ca+Mg+Fe (carbonatitic)

From Shirey et al. (2013) and references therein

Silicate mineral inclusions in diamond used for radioisotopic Rb-Sr and Sm-Nd age dating by Richardson et al. (1984, 1986)

> Peridotitic Harzburgitic garnet (high in Cr, low in Ca)

Eclogitic Orange garnet and colorless clinopyroxene

Diamond ages

From Shirey and Shingley (2013)

Sulfide mineral inclusions in diamond used for radioisotopic Re- Os age dating by Westerlund et al. (2006), Pearson et al. (1998). Richardson et al., (2001).

> <u>Peridotitic</u> Ni-rich iron sulfide (pentlandite)

<u>Eclogitic</u> Ni-poor iron sulfide (pyrrhotite)

Diamond ages

Sm-Nd dating of silicate inclusions in diamond

The data obtained by breaking apart 630 inclusionbearing diamonds and grouping each set of inclusions as clinopyroxene (cpx) or garnet (gar).

Morphology of diamonds in six kimberlites from Ekati diamond Mine, Canada. Gurney et al. (2004, 2010).

Surface features

Conditions in the mantle and in kimberlite magma

What a diamond can tell us

