Goniometrické rovnice (Seminář z matematiky i - m1130/02 2017) (1) Řešte v IR rovnice: (a) 2 sin x — sin* = 0 (b) sin2*+ 2sin*-3 = 0 (c) cos*(2cos* + 1) = 1 (d) v/3tg2* + 2tg*-v/3 =0 (e) 3 sin* = 2cos2* (f) sin* + cos2* = - 4 (g) 3cos2* — 4cos* — sin2* — 2 = 0 (h) cos2* + sin* = 0 (i) sin* = cos* (j) sin*+ y/3 cos* = 0 /i x sin-* (k) —=■ + cos* = 1 V3 (1) \/3sin* + cos* = y/3 K= U {ta, f + 2for, |^ + 2^} £eZ U {f +2^} £eZ fceZ * = U {f + ta, jn + kn} keZ K= U {f + 2ta, |^: + 2^} fceZ keZ keZ K= U {%+2kn,ln + 2kn,^n + 2kn} keZ K= U {f+ ^} £eZ * = U {i^ + ta} £eZ U {2ta,§ + 2kx) keZ K= U {f + 2for,f + 2ta} £eZ (2) Řešte v IR následující rovnice (nezapomeňte stanovit podmínky, je-li to třeba): (a) sin2* + cos2* = 1 +tg* (b) sin(*+|)+cos(*+|) = l+cos2* (c) sin 2* — cos2 2* = cos 2* K= U {ta,f+ fcf} fceZ keZ K= U {%+k7C,%7C + k7C,%+k7c} keZ (d) cosA' + sinx cos2a" 1 — sin2A" (e) cos4x — sin4x = ún2x sinx+ sin3jc (f) cos x — cos3x Vš (g) cosacos2x = cos4jccos5a" (h) sin3jc = 2 siru (i) tgx — sin.v +cosjc = 1 (j) 2sin2A" + cosjc = 2sin2A" cos.t + 1 (k) J^+^L = 1 l-VŠtgx 3 (1) sin2 2x + sin2 4x = - 2 (m) |sinjc| = sinjc + 2 (n) |tgx + cotgx| Vš K= U {ln + kn, 2kx, \n + 2kn} keZ K= U {f + ^f} keZ K= U {f + kn} keZ, K= u {^f} keZ K= U {km, %+kn, \n + kn] keZ K= U {2k%, f + k7t} kel K= U {f +k%,2kn} kel K= U {{^r + ta} * = u {f+*f,t+*!,f+*f} £e2 a:= u {|tt+2^} AreZ ^= U {ff + %n + kn, žn + kn] kel