variacni_rada<-function(X, nazvy){ X <- as.numeric(X) nj <- rep(0,max(X)) for(j in min(X):max(X)){ nj[j]<-sum(X==j) } n <- sum(nj) pj <- nj/n Nj <- cumsum(nj) Fj <- cumsum(pj) (variacni.rada <- data.frame(nj=nj, Nj=Nj, pj=pj, Fj=Fj)) row.names(variacni.rada) <- nazvy variacni.rada } dotplot<-function(X, Y, main='Dotplot', xlab='X', ylab='Y', xlim=c(min(X),max(X)), ylim=c(min(Y),max(Y)), col='black', pch=21, bg='white', cex=1, lwd=1){ rand <- rnorm(length(X),0,0.03) X2 <- X+rand plot(X2,Y,type='p',main=main,xlab=xlab,ylab=ylab, xlim=xlim,ylim=ylim,col=col,pch=pch,bg=bg,lwd=lwd) } norm2 <- function(x, y, mu1, mu2, sigma1, sigma2){ rho <- 0 Sigma <- matrix(c(sigma1^2, sigma2*sigma1*rho, sigma1*sigma2*rho, sigma2^2), 2, 2, byrow=T) xy <- c(x[1] - mu1, y[1] - mu2) konstanta <- 1/(2*pi*sqrt(sigma1*sigma2*(1-rho^2))) hustota <- konstanta*exp(-1/2*t(xy)%*%solve(Sigma)%*%xy) return(hustota) } #Scheffé Scheffe <- function(X, group, names, alpha){ ID <- group r <- length(unique(ID)) n <- length(X) Xi. <- Mi. <- ni <- NULL for(i in 1:r){ Xi.[i] <- sum(X[ID==i]) ni[i] <- length(X[ID==i]) Mi.[i] <- sum(X[ID==i])/ni[i] } X.. <- sum(X) M.. <- mean(X) SA <- sum(ni*(Mi.-M..)^2) fA <- r-1 ST <- sum((X-M..)^2) SE <- ST-SA fE <- n-r Fa <- (SA/fA)/(SE/fE) Scheffe.R <- matrix(NA, r, r) Scheffe.L <- matrix(NA, r, r) Sh <- sqrt(SE/fE) for(k in 1:r){ for(j in 1:r){ Scheffe.R[k,j] <- Sh*sqrt((r-1)*(1/ni[k]+1/ni[j])*qf(1-alpha,r-1,n-r)) Scheffe.L[k,j] <- abs(Mi.[k]-Mi.[j]) } } Scheffe.R <- data.frame(Scheffe.R, row.names=names) names(Scheffe.R) <- names Scheffe.L <- data.frame(Scheffe.L, row.names=names) names(Scheffe.L) <- names return(list(L=Scheffe.L, R=Scheffe.R)) }