HISTORIA MATHEMAT1CA 12 (1985), 123-141 Felix Klein's "Erlanger Antrittsrede" A Transcription with English Translation and Commentary David E. Rowe* Pace University, Pleasantville, New York 10570 One of Felix Klein's leading interests was the role of mathematics education not only in the German universities but in the secondary schools as well. Klein played a leading role in the educational reform movements that flourished during the twenty-year period prior to World War I, and in 1908 he was elected President of the International Mathematics Instruction Commission. The "Erlanger Antrittsrede" of 1872, presented herein, gives a clear expression of Klein's views on mathematics education at the very beginning of his career. While previous writers, including Klein himself, have stressed the continuity between the Antrittsrede and his later views on mathematics education, the following commentary presents an analysis of the text together with external evidence supporting exactly the Opposite conclusion. i> 1985 Academic Press. Inc. Eines der Leitmotive im Leben Felix Kleins waren sein Interesse und seine Bemühungen um den mathematischen Unterricht in Schule und Hochschule. Klein spielte eine führende Rolle in der Unterrichtsreformbewegung der zwanzig Jahre vor dem ersten Weltkrieg. Im Jahre 1908 wurde er zum Vorsitzenden der Internationalen Mathematischen Unterrichtskommission gewählt. Seine hier wiedergegebene Erlanger Antrittsrede von 1872 ist ein klarer Ausdruck von Kleins Gedanken zu diesem Thema am Anfang seiner Karriere. Frühere Autoren, darunter Klein selbst, haben die Kontinuitäten zwischen der Antrittsrede und seinen späteren Ideen betont. Der folgende Kommentar dagegen kommt aufgrund einer Analyse des Textes und weiterer Belege zum gegenteiligen Schluß. «-• iw Academic Press, inc Une des preoccupations majeures de Felix Klein fut le röle de l'enseignement des mathe-matiques, pas seulement dans les universites allemandes mais aussi dans l'enseignement secondaire. Klein eut une influence determinante sur les mouvemenls de reforme de l'enseignement qui fleurirent durant les vingt annees precedant la premiere guerre mondiale. et en 1908 fut elu president de la commission internaionale sur l'enseignement des mathemati-ques. L' "Erlager Antrittsrede" de 1872, presente ci-dessous, exprime clairement les idees de Klein sur l'enseignement des mathematiques au tout debut de sa carriere. Alors que les analyses precedentes. y compris de Klein lui meme, ont souligne la continuite entre l'Antrit-tsrede et ses points de vue ulterieurs sur l'enseignement des mathematiques, le commentaire qui suit presente une analyse du texte ainsi que d'autres documents conduisant ä la conclusion COntraire. m 19X5 Academic Press, Inc As was pointed out in [Rowe 1983], Felix Klein's Erlanger Programm [Klein 1872] has often been mistaken for the speech Klein gave on accepting the position of Professor Ordinarius at Erlangen, his ''Erlanger Antrittsrede." What is more, thbse commentators who have avoided this error and emphasized the significance 1 Partially supported by grants from the Alexander von Humboldt-Stiftung and the National Science Foundation. 123 0315-0860/85 $3.00 Copyright 1985 by Academic Press. Inc. AI! rights of reproduction in any form reserved. 124 DAVID E. ROWE HM 12 of Klein's speech in its own right have presented widely divergent interpretations of its actual content [1]. Partly to clarify this situation, but primarily because of its own intrinsic interest, this speech is presented herein along with the following English translation and commentary. Klein's "Erlanger Antrittsrede" can also be found in [Klein 1977], where the transcription appears alongside a photocopy of the original manuscript [2]. Portions of the text can also be found in [Lorey 1916, 150, 165-166], although these deviate somewhat from the original. The author wishes to express thanks to the Niedersächsische Staats- und Universitätsbibliothek Göttingen for permission to publish the manuscript and to quote from other documents in the Klein Nachlass. COMMENTARY In his recent study of Felix Klein's role in the educational reform movements of the 1890s and early 1900s, Lewis Pyenson wrote that "the text of Klein's unpublished inaugural lecture of 1872 was as probing as his printed message [i.e., the Erlanger Programm]. He ranged over all the issues that two decades later would come to dominate the mathematics reform movement" [Pyenson 1983, 54]. Another recent commentator who has stressed the importance of Klein's "Erlanger Antrittsrede," Karl-Heinz Manegold, maintains that this speech already contained the essential elements of Klein's later teaching and organizational activity [Manegold 1970, 92]. Indeed, similar remarks have been made by a number of writers who have mentioned Klein's Antrittsrede, many of whom follow Klein's own testimony in his Autobiographical Sketch of 1923 [3], where he wrote that the viewpoints and proposals in the Antrittsrede "have also remained the essential guiding principles for my later activity" [Klein 1923, 18]. Unfortunately, this testimonial of Klein's is highly unreliable, and gives a distorted impression of the actual content of his speech. On the basis of his commentary, one should expect to find a "detailed program" for his teaching plans in Erlangen, including among other things "regularly repeated elementary lectures . . . along with the special lectures intended for a small number of serious students . . . backed up by means of exercises and seminar activity ... as well as the establishment of . . .a reading room and library with open-shelves [Präsenzbibliothek] . . . which would make it possible for students to study the published literature" [Klein 1923, 18]. When one searches the text itself, however, the "detailed program" Klein promises seems to have mysteriously disappeared. The greater part of his speech is taken up instead by a rather rambling attempt to characterize the nature of mathematical thought and its relation to other disciplines, particularly physics. Only scant mention is made of any concrete proposals for new teaching facilities and conditions, and not a word, moreover, is devoted to the "repeated elementary lectures . . . special lectures . . . reading room and library with open-shelves." One might surmise from this that Klein's later account of the Antrittsrede must have been written without direct reference to the manuscript, and that his memory of the actual content of the speech was probably blurred by subsequent events. HM 12 KLEIN'S "ERLANGER ANTRITTSREDE' 125 The point to be emphasized, however, is that those writers who have utilized this account in claiming there is a continuity between the Antrittsrede and Klein's later views on mathematics education have been basing their argument on an unreliable source. That this contention is faulty can be shown most directly by referring to another document in the Klein Nachlass—the Autobiographical Notes from 1913 [4 . These contain a summary of the Antrittsrede in fifteen points together with fojr additional, rather illuminating marginal remarks. This unpublished document, unlike the commentary on the Antrittsrede in his Autobiographical Sketch of ten years later, presents a very accurate synopsis which leaves no doubt that this time Klein was writing with the text in hand [5]: 1. Geringe Verbreitung der Mathematik. 2. Fatale Zweiteilung unserer Bildung. 3. Zweck d[es] mathematischen] U[nterrichts] überhaupt u[nd] s[eine] Form a[n] d[en] Universitäten. 4. Math[ematik] als Selbstzweck. Genuß. Fortschreiten der Wissenschaft. Mathfematik] + Musik. 5. Anwendungen, zumal zum Aufbau anderer Wissenschaften. 6. G[ebrauch] mathematische Physik. In verschiedener Fassung immer dieselbe Rolle [6]— wie bei der Geometrie. 7. Umgekehrt Bedeutung der anderen Disziplinen für die Mathematik], ""physikalische Mathematik." 8. Mathematik] als formales Bildungsmittel, gerade auch für Naturwissenschaftler. (u[nd] Mediziner!). 9. Welche Vorlesung, ist gleichgültig. 10. An den Gymnasien auszubauen: Interesse, Leben und Geist. Kein neuer Stoff. 11. Daher zweckmässige Ausbildung der Lehramtskandidaten wichtig. 12. Wir verlangen Spezialarbeit von Jedem. 13. Ergänzung der Vorlesungen durch Einrichtungen = mathematisches] Institut. (Ausdruck von Ehlers). 14. Vorträge im Seminar, Zeichnen und Modellieren. 15. Vergleich mit Polytechnikum, für die Universität] ungünstig. The four marginal remarks read as follows: Referring to point 6: "Ich würde jetzt die Beherrschung der spezfiell] Anschauung doch auch dem Math[ematik] zuweisen." Referring to points 9 and 10: "Da bin ich nun anderen Sinnes geworden." Referring to points 14 and 15: "Zahlenrechnen u[nd] Messen liegen ganz ai ßerhalb meines Gesichtskreises." At the bottom: "Man arbeitet, wenn man jung ist, soviel rascher und unstetiger. Man glaubt auch die Ideale bald erreicht." One sees at a glance that this is no "detailed program" for Klein's teaching plans at Erlangen: of the fifteen theses, only three (Nos. 12-14) deal with actual pioposals for mathematics students at the university. The key points to consider are numbers 8, 9, and 10. Points 8 and 9 deal with Klein's advice to students of the niitural sciences and medicine, quoted earlier in another connection. The marginal note again confirms that by 1913 Klein was of a different opinion. The tenth point, a plea for livelier teaching rather than new subject matter in the schools, is also rejected, which is not very surprising when one remembers that Klein later cam- 126 DAVID E. ROWE HM 12 paigned actively for calculus instruction in the Gymnasien [Tobies 1979]. The final remark, "When one is young, one works much more hastily and unsteadily, one also believes the ideals will soon be attained,'1 has a melancholy wisdom about it that suggests the distance Klein felt from the impetuous idealism of his youth. Lewis Pyenson's account of the "Erlanger Antrittsrede" concentrates primarily on those portions that stress the interrelationship between mathematics and physics (points 5-9 in Klein's synopsis above). According to Pyenson, Klein later put this educational program into practice by diverting a grass roots reform movement in experimental physics that called for a new science curriculum with substantial laboratory work in the secondary schools throughout Germany. Sensing the threat this posed to the privileged discipline of pure mathematics, Klein and his cohorts "devoted all their energies to redirecting the reform movement toward recognizing how pure mathematics could organize learning to achieve both practical and spiritual goals in physical sciences and industry" [Pyenson 1983, 126]. One of the problems with this thesis is that Pyenson fails to emphasize the degree to which Klein's views regarding pure mathematics soon departed from the neohumanist ideals set out in his "Erlanger Antrittsrede." The six years from 1875 to 1880 during which Klein taught at the Technische Hochschule in Munich were, in fact, decisive for his later development. The mathematics club that met every other Saturday concentrated its interests on topics at the interface of science and technology, and one of its members, Carl von Linde, was among Klein's staunchest allies throughout his career. At the end of this period, when Klein returned to a university career as Professor of Geometry at Leipzig, his views on mathematics education had already undergone substantial change. One need only read the Antrittsrede he delivered at Leipzig in 1880 in order to realize how far he had come from the views set down in his Erlangen speech eight years earlier. It is interesting to note that Manegold's reading of the "Erlanger Antrittsrede" squares very nicely with Klein's later views on the mutual roles of mathematics, science, and technology in modern education. For example, he suggests that Klein's proposals for "constructive exercises" in suitable "practical courses" were set forth with two model institutions in mind: the Ecole Polytechnique and the Eidgenössische Polytechnikum in Zürich. He cites the same passage from [Klein 1967] (which was based on lectures of 1914-1915) twice, in order to emphasize Klein's affinity with the tradition of the Ecole Polytechnique and to compare his activities with those of its founder, Gaspard Monge [Manegold 1970, 88. 95-96]. Indeed, there is ample evidence in Klein's later writings indicating that he was a partisan of the teaching traditions at these two schools [Klein 1967, 63-66]. One also finds a certain antipathy toward the neohumanist tradition, which Klein wrote "supported the free development of the personality, a doctrine that turned interest decidedly away from the exact sciences" [Klein 1967. 93]. The question that needs to be considered, however, is whether or not these views accurately reflect the content of the "Erlanger Antrittsrede." According to Manegold, they do: he contends that Klein's point of departure in the Antrittsrede, rather than being "based on the neohumanistic conception of mathematics as a purely HM 12 KLEIN'S "ERLANGER ANTRITTSREDE' 127 foimal educational value [Bildungswert], centers on the power of functional thinking;." There is little evidence, however, in the text to support this claim. In fact, the views in Klein's speech of 1872 are much closer to the traditional neohumanist position than they are to the modernist approach that came to be associated with hit; name shortly after the turn of the century. Vlanegold passes over the long section on the aesthetic quality of mathematics in the Antrittsrede that begins with the assertion that "mathematics, like every science, is undertaken first of all for its own sake; it is motivated by the desire for that knowledge which mathematical study provides, or, if you prefer, through the en oyment that is a consequence of that study." Instead, he quotes part of a later passage that begins, "But mathematics exists not simply for its own sake, it also ex sts in order to serve the other sciences," conveniently omitting the all-important continuation, "as well as for the formal educational value that its study provides" (Klein's emphasis). This stress on the importance of mathematics as a formal component within a broadly based, holistic education runs directly counter to Manegold's claim that Klein's educational proposals stand outside the neohu-mtnist tradition. ^ot that this is the only passage that can be cited: Klein later writes, in reference to the education of physicists, that "the value of mathematics lies less in the knowledge gained through its application, although this is certainly not to be undervalued, than through the training of the mind [Schulung des Geistes] gained through working with pure mathematics" (Klein's emphasis). And further: "Mathematics as a formal educational tool [Bildungsmittel], that is the key phrase [Loosungswort] which I would implore students of the natural sciences and medicine to bear in mind. Certainly students of the natural sciences would find it worthwhile during the first semester to hear one or another of the mathematical lectures. Which lecture is a matter of indifference, as the formal education thus acquired is the primary consideration" (Klein's emphasis). [t must be borne in mind here that what Klein means by the formal value of mathematical education is quite different from the formalism that dominated German mathematics education prior to the development of seminars at the universities. In fact, he sharply criticizes this kind of Formalismus in the Antrittsrede: "Instead of developing a proper feeling for mathematical operations, or promoting a lively, intuitive grasp of geometry, the class-time is spent learning mindless formalities or practicing pretty trivialities that exhibit no underlying principle." These remarks reflect Klein's lifelong preference for mathematical insight rather thun computational virtuosity, intuition rather than rigor; and not least, his proper isity for geometric as opposed to analytic modes of thought. Elsewhere in the Antrittsrede, he remarks that mathematics has progressed to a higher stage in wKich mastery of the formalities is no longer sufficient: "today we require an intier-understanding of the formal procedures, and consider a mathematical result complete only when it can be regarded from beginning to end as self-evident." N«ar the end of his career, Klein credited Dirichlet, above all others, with having accomplished this quiet revolution in the history of mathematics, and he quoted 128 DAVID E. ROWE HM 12 Minkowski with approval: "Dirichlet possessed the art of being able to express a maximum of penetrating thoughts with a minimum of blind formulas" [Klein 1967, 97]. But all this is certainly in line with the mainstream, neohumanist tradition. Moreover, what Klein has to say in the Autrittsrede about the mathematics teacher in the Gymnasien (and notice that the Realgymnasien and Oberrealsvhu-len never even enter the picture in this lecture) fits in perfectly with the traditional neohumanist ideal of the "scholar-teacher1': . . . we, as university teachers, require not only that our students, on completion of their studies, know what is to be taught in the schools. We want the future teacher to stand above his subject, that he have a conception of the present state of knowledge in his field, and that he generally be capable of following its further development. Therefore, we hope to lead him far enough that he at least once undertakes an independent research study. In this passage, Klein upholds the key concept behind the 1866 Prussian teaching regulations that governed the certification of mathematics teachers—the requirement that teaching candidates publish an original study in their chosen field. The "selbständige Doktorarbeit" requirement was instated on the recommendation of Friedrich Richelot, the leading representative of the Königsberg mathematical tradition at that time [Lorey 1916, 99], In the opinion of Wilhelm Lorey, who was certainly a qualified authority regarding Klein's work in mathematics education [7], the "Erlanger Antrittsrede" of 1872 "represents throughout, despite the call for drawing exercises, the viewpoint of the formal educational value of mathematics, which has its basis in the Königsberg system. It is completely irrelevant which subject matter the teaching candidate studies, so long as he learns to work independently" [Lorey 1916, 166]. This last point comes to the heart of the matter, for as Lorey points out, Klein's forty years of teaching experience eventually led him to reject this principle. He notes this about-face by quoting from the private notes that Klein made available for his personal use, in which Klein wrote: "1 would now suggest that teaching candidates of average talent should confine themselves to such studies as will be of fundamental importance in the later exercise of their profession, while everything beyond this should be reserved for those with unusual talent or favorable circumstances" [Lorey 1916, 167]. With this as background, it is not difficult to unravel the main thread of Klein's argument in the Antrittsrede. He begins by admitting that mathematics is an esoteric subject, but counts this as an advantage, since it is thereby free of the dilettantism that plagues most other disciplines. From here he goes on to decry the general lack of mathematical education, which he feels reflects the wider split between the scientific and humanistic cultures, a rift largely resulting from historical accident. In Klein's view, mathematics lies outside the fold of the two cultures, although it is often treated as part of the sciences because of the indispensable role it plays in so many scientific disciplines. What Klein especially regrets concerning general mathematics education is that the subject is so often regarded as dull and worthless because of the poor quality Hfl 12 KLEIN'S "ERLANGER ANTRITTSREDE' 129 of the instruction. The beauty and charm of the subject are therefore completely lost on the vast majority of students, and for no other reason than that the typical mithematics teacher is altogether unable to convey these aspects to his charges. Wfiile admitting that the incomparably higher pleasure of creative production in mathematics is an avenue open only to the gifted few, Klein emphasizes that the vast majority of students can still develop an appreciation for the subject, if only it is aught properly. To strengthen this argument, he invokes an analogy between mathematics and music, another field in which the gift of creativity is altogether uncommon, even though almost everyone has some inborn musical sense [8]. He concludes that the teacher's primary task is to instill a sense of mathematical Geist in lis pupils, and that by so doing he can make a vital contribution toward bridging th<; gap between the two cultures. Taking physics as a model for the way this can be accomplished at the univer-sit/ level, Klein goes on to show the intimate connection and interplay between pure mathematics and recent advances in this field. What is stressed throughout is th<; formal aspect, the manner in which mathematical thought enters into and permeates physical conceptions, rather than the acquisition of specific knowledge. In pursuing this line of argument, it is easy to see why Klein suggests that it is i matter of indifference which particular mathematics course a science student hajppens to study, so long as it is taught in a lively, geistvoll manner that succeeds in imbuing the student with a feel for the subject. But now a practical problem arises, particularly regarding medical students: th<:y simply have no time for extra studies. Thus keeping in mind the esoteric nature of mathematics (Klein's first premise), a fundamental, though certainly fainiliar, dilemma arises: either one loses potential students by upholding academic standards, or one waters down the subject and thereby sacrifices its integrít/. Klein never actually states this dilemma, although it is implicit in his argument. One sees further that his musical analogy seems to break down here, since music is capable of being appreciated passively, while mathematics requires an acive involvement with the subject. Klein skirts this dilemma only by unloading the problem on the Gymnasien Thjis is where the main burden for mathematics education must fall; what the universities can at most accomplish is to ensure that the instruction in the Gymnasien is the best possible. As we have already seen, Klein has relatively little that is new to say about how this is to be accomplished. The primary vehicle for ensuring quality in the teaching candidates is the "selbständige Doktorarbeit." This he fefls is the single best assurance that the Lehramtskandidat will be sufficiently iirimersed in mathematics so as to be capable of transmitting a feel for the subject to his students. And if the university is able to produce better teaching candidates, then, Klein as|;erts, the mathematics instruction at the Gymnasium will automatically improve in and of itself. The fact that Klein points to the great improvement that has already taken place in this regard indicates that he sees himself as part of an on-goi ng movement rather than as someone seeking new directions or fundamental 130 DAVID E. ROWE HM 12 reform. The only new requirements for the modern-day mathematics professor are the requisite institutional and curricular support Systems, i.e., seminars and facilities for drawing, modeling, and lecturing. But most importantly, a free and lively lecture style that is capable of imparting the essence of mathematical think-ing and the spirit of mathematical culture. KLEIN'S "ERLANGER ANTRITTSREDE "; GERMAN TRANSCRIPTION Prorector magnifice! Collegen, Commilitonen! Hochgeehrte Versammlung! Wenn es sonst wohl Sitte ist, dass der neu Angekommene Ihnen von hiesiger Stelle eine Schilderung entwirft von den neuesten Errungenschaften, die seiner Wissenschaft zu Theil geworden sind, oder weiter ausholend von dem Entwicklungsgange, der zu den heutigen Auffassungen hingeleitet hat—so habe ich geglaubt, bei dem wenig zugaenglichen Character meines Faches den Gegenstand fuer meinen heutigen Vortrag in einer etwas anderen Richtung suchen zu sollen. Ist doch bei der eigenthuemlichen Schwierigkeit, welche jede ungewohnte mathematische Gedankenoperation mit sich fuehrt, eine einmalige mathematische Vorlesung nur zu leicht selbst engeren Fachkreisen unverstaendlich! Um wie viel mehr muesste das bei einer Gelegenheit, wie der heutigen, der Fall sein! Es ist ja doch so, dass selbst geringe mathematische Kenntnisse nur wenig verbreitet sind, dass die einfachsten mathematischen Conceptionen nicht als allgemein aufgefasst vorausgesetzt werden koennen. Fuer die Wissenschaft als solche ist das kein unbedingter Nachtheil. Es bleibt ihr dadurch ein gewissermassen esoterischer Character, sie haelt sich dadurch verhaeltnissmaessig frei von dem laestigen Dilettantenthume, das sich in so manchen anderen Disciplinen breit macht. Aber vom allgemein menschlichen Stand-puncte ist die geringe Verbreitung mathematischer Kenntnisse zu beklagen. Nicht etwa nur, weil Besitz derselben gewisse practische Vortheile mit sich fuehren kann, sondern in einem hoeheren Sinne, weil ihr Besitz die Quelle zu reichem und edlem Genüsse werden kann, weil die Zugaenglichkeit so mancher anderer wissenschaftlicher Gebiete an ihn als eine Vorbedingung geknuepft ist. Diese geringe Verbreitung mathematischer Kenntnisse ist wohl nur als ein Symptom eines schlimmeren und tiefer gehenden Misstandes zu betrachten, als ein Symptom der verhaengnissvollen Zweitheilung, die nur zu sehr in unserer Bildung Platz gegriffen hat und von manchen Seiten sogar principiel gebilligt wird: ich meine der Zweitheilung in humanistische und naturwissenschaftliche Bildung. Die Mathematik und was mit ihr zusammenhaengt, wird dabei der naturwissenschaftlichen Partie zugewiesen, wo sie ihrer Unentbehrlichkeit wegen allerdings ihren Platz findet, obgleich sie ihrem begrifflichen Inhalte nach weder zu der einen noch zu der anderen Kategorie gehoert. Wenn es bei der heutigen Veranlassung nicht nur gestattet sondern sogar geboten scheint, allgemeine Auffassungen darzulegen, so lassen Sie mich vom Standpuncte des Mathematiker's wie namentlich auch vom persoenlichen Standpuncte gegen die gemeinte Zweitheilung einen Protest einlegen. Ich erblicke den inneren Grund derselben nur in einer voruebergehenden Ursache; in dem Umstände, dass sich die Naturwissenschaften erst in neuerer Zeit wesentlich entwickelt haben, wo denn die aeltere humanistische Richtung nicht bei der Hand war, die neuen Bildungselemente in sich aufzunehmen, waehrend die Anhaenger der neuen Forschung umgekehrt zu sehr von ihrer Thaetigkeit in Anspruch genommen waren, um ihre Aufmerksamkeit auch noch auf anderweitige Gegenstaende zu verbreiten;—ich bin der Hoffnung, dass sich in nicht zu ferner Zeit die Gegensaetze wieder ausgleichen werden, dass eine einheitliche Bildung wieder zu Stande kommt, in der sich die nun getrennten Elemente harmonisch vereinigt finden. Hochgeehrte Anwesende! Das sind gewiss keine neuen Saetze, die nicht schon oft ausgesprochen worden waeren, aber es sind immerhin seltene Saetze, die man nicht oft genug aussprechen kann. Wenn wir von diesem einheitlichen Standpuncte die Reihe der Wissenschaften ueberblicken, so steht Mathematik auf der einen Seite, ihr zunaechst die exacteren Naturwissenschaften: die theoretische Mechanik, gewisse Partieen der Physik und Astronomie. Ausgezeichnet von allen anderen, was Strenge, was wissenschaftliche Methode betrifft, treten sie zurueck, wenn es sich, wie man sich wohl ttvt 12 KLEIN'S "ERLANGER ANTRITTSREDE' 131 aui gedrueckt hat, um die Zahl der in ihnen beruehrten menschlichen Interessen handelt, und lassen den Vorrang den in dieser Richtung voranstehenden socialen Wissenschaften. ])och ich will hier diese Bemerkungen, die ja auch anderweitig oefter entwickelt worden sind, in ihr;r Allgemeinheit nicht weiter verfolgen. Lassen Sie mich vielmehr, allerdings gestuetzt auf diese allgemeine Auffassung, ein specielleres Thema in Angriff nehmen, dessen Gegenstand mir naeher lie|;ti und dessen Eroerterung Sie vorzugsweise von mir erwarten werden. Ich moechte zu Ihnen reden vo\i dem Zwecke des mathematischen Unterricht's ueberhaupt und insbesondere von der Form, die wir bestrebt sind, ihm an den Universitaeten zu ertheilen. Mathematik ist. wie jede Wissenschaft, zunaechst um ihrer selbst willen da; sie ist um der Erkenntnis s willen da, welche aus ihrem Studium fliesst, oder, wenn Sie lieber wollen, sie ist da um des Genusses willen, den die Beschaeftigung mit ihr zur Folge hat. Ich druecke mich absichtlich gerade in di< ser Weise aus, um dem vielfach gehoerten Urtheile entgegenzutreten, als sei Mathematik ein trockenes, ein langweiliges Fach, eine Art nothwendiges Uebel. Das wird Niemand nachsprechen koinnen, der sich einmal des Reizes der in sich zusammenhaengenden Einsicht bewusst geworden ist, wh sie aus einer durchgefuehrten mathematischen Betrachtung entspringt. Ich erinnere Sie in dieser Beziehung an das Vergnuegen, das jeder empfindet, wenn eine merkwuerdige geometrische Wahrheit pl^etzlich durch das Ziehen einiger Huelfslinien in der Figur evident wird; oder an die Ueberraschung, di< der Anfaenger erfaehrt, wenn er eine scheinbar schwierige Aufgabe mit Huelfe einer Gleichung ei( fach und leicht aufloesen lernt. Neben diesen receptiven Genuss der logischen Einsicht stellt sich fuduction. Glauben Sie nicht etwa, dass mathematische Production eine einfach deductive Thaetigkeit sei. Im Gegentheil, das Erste ist immer, dass man inductiv, haeufig nur auf Analogieen gestuetzt, die Richtigkeit einer Beziehung ahnt, sie auffasst, in ihren Consequenzen verfolgt;—und ent allmaehlich sucht man die Momente zu einem wirklichen Beweise zusammen. Zum Schlüsse wi ndert man sich gewoehnlich, dass man den Sachverhalt nicht gleich gesehen hat, dass man uejerhaupt darueber hat nachdenken muessen. Man ist dann mit dem Gegenstande, mathematisch ge lommen, fertig, und in diesem Sinne gilt die bekannte Behauptung Jacobi's: dass die Mathematik di« Wissenschaft von den Dingen sei, die sich von selbst verstehen. ch muss hier hervorheben, was nur zu wenig bekannt ist, dass diese productive Thaetigkeit in der nereren Zeit sich nicht etwa nur auf Detail-Ausfuehrungen bezieht, sondern dass unsere Wissenschaft au;h im Grossen fortschreitet, sogar mit einer Geschwindigkeit sich weiter entwickelt, die in wenig an leren Disciplinen erreicht werden mag. Unsere heutige Mathematik sieht der Mathematik, wie sie vor hundert Jahren war, wenig aehnlich; und es ist das um so hoeher anzuschlagen, als bei uns jede G^ neration auf den Errungenschaften der vorangehenden fortbaut und nicht etwa, wie das sonst wohl geschieht, sich zunaechst damit beschaeftigt, das frueher aufgefuehrte Gebaeude niederzureissen. Es ist genau hundert Jahre, dass Lagrange die Theorie der partiellen Differentialgleichungen begonnen ha , welche jetzt eine ausgedehnte Disciplin bildet, die die analytische Mechanik als einen Theil umfasst. Es sind fuenfzig Jahre, seit die projectivische Geometrie erwachsen ist, welche bestimmt wi r, unsere gesammte geometrische Auffassung umzugestalten. Die Zahlentheorie im heutigen Sinne, di« Functionentheorie, die sog. mathematische Physik sind Errungenschaften alle derselben Zeit. Di