Programming in geoinformatics 2017 Theory 1

1 PyZo environment (http://www.pyzo.org/)

roulette_gen.py (/home/simon/Dropbox/Python/roulette_gen.py) - Interactive Editor for Python x

File Edit View Seftings Shell Run Tools Help

- Shells
roulette_gen.py
1 import random CIPythony ' 4 [e 3 L2 XS
2 Loss. You lost 4 USD. You currently have 438 USD.
3 balance = int(raw input{"How much do you have? ")) Round 664. Betting 8 USD.
4 gamesLimit = range(int({raw input("How many games do Loss. You lost 8 USD. You currently have 43@ USD.
you want to play? "))} Round 665. Betting 16 USD.
5 goal = intl{raw_input{"How much money do you want? Loss. You lost 16 USD. You currently have 414 USD.
"B - Round 666. Betting 32 USD.
6 Loss. You lost 32 USD. You currently have 382 USD.
7 bet =1 Round 667. Betting 64 USD.
& gamesCount = 1 Loss. You lost 64 USD. You currently have 318 USD.
9 lossesCount = @ Round 668. Betting 128 USD.
10 maxBalance = balance You're broke and can't bet anymore! Your balance is 190 US
11 maxBet = 1 D. You'd need to bet 256 USD to continue. The most you had
12 maxlLoss = 0 was 445 UsD.
13 end = False The most you won: &4 USD. The most you lost: 128 USD.
14 I
15 def gameRound(seq): e
16 global gamesCount
17 global bet Source structure ® File browser]
18 global balance -
19 global maxBalance = = -\) T« | ||Click star to bookmark current dir v
20 global lossesCount I It
21 global maxLoss def gameRound ¥ Ihome/simon
22 global end — -
23 global maxBet 4 -android
24 gamesCount = seq + 1 » [] .cache I
25 print "Round %s. Betting %s USD." % » P cat_installer
(gamesCount, bet) _
26 score = random. randint(1,2) 4 g «cert
27 if score == 4 .config
28 balance += bet » 7 .cups
29 if balance > maxBalance: » E drobbox
30 maxBalance = balance :
31 if bet > maxBet: I*pyc T+ || Search in files 4.,

« interactive shell
o block of code (Ctrl+E to compile, Ctrl+S to save)
o Python 2.7.X (has to be installed, check with Win+R — cmd — python -V)

2 Variables

Variables are reserved memory locations to store values. When you create a variable, you reserve

some space in memory.

2.1 Assigning values to variables

We use the equal sign (=) to assign values to variables:

15
latitude = 49.2041869
longitude = 16.5980044

students

Textual values (= strings) are inside quotes:

address = 'Kotlarska 2'

What is not allowed as a value:

http://www.pyzo.org/

Programming in geoinformatics 2017 Theory 1

mizing data types:
bad1l 'Kotlarska'2
bad2 15students

will result im an error:

bad3 =
bad4 = 'Kotlarska
badb5 = 10 000

will be stored as a wrong type!

bad6 = 49,2041869 # float has a decimal point

What is not allowed in variable names:

12apes = 'movie' # beggining with a number

the-answer = 42 # special characters
the answer = 42 # spaces

round = 1 # built-in names and keywords

What is allowed in variable names:

pointl = 'Brno' # number not in the beginning
the_answer = 42 # underscore the only allowed spectial character

theAnswer = 42 # camelCase naming convention

3 Basic commands

3.1 Print

Outputs result to command line
o debugging (e.g. why is there an invalid value on this variable?)
¢ informative purposes

Simple text:

print 'Hi there!'

print 'Kotlarska 267/2, Brno, 602 00'
print '"'

Hi, T am a multiline comment,

and don't mind being all over the place!

Printing variables:

Programming in geoinformatics 2017 Theory 1

latitude = 49.2041869
longitude = 16.5980044

address = 'Kotlarska 2'

print address
print 'I am at: ' + address

print 'T am at %s, NYs EJs' J(address, latitude, longitude)

3.2 Input
Get data from the user / let him change the program behaviour:

city = raw_input('Where are you? ')

print city + ' is the best!'

3.3 Comments
Documentation, informative purposes, annotations.
What are the coordinates most to the north and south?

print max(latitudelist) # northernmost, e.g. 89.5
print min(latitudelist) # southernmost, e.g. -60.3

Recommendation

Comments shouldn’t be necessary to understand the code!
Use self-explanatory variable names, try to write clean code.
¢ bad names: varl, var2, ..; a, aaa, b, ab, ..

e good names: cities, latDD, lonDMS

4 Built-in types (https://docs.python.org/2.7/library/stdtypes.
html)

4.1 Truth testing

False

True

We use boolean operators to compare values:

https://docs.python.org/2.7/library/stdtypes.html
https://docs.python.org/2.7/library/stdtypes.html

Programming in geoinformatics 2017 Theory 1

X or y # True or False -+ True
x and y # True and False -+ False
not x # not True -+ False

Other data types can be evaluated as boolean values:

1 or False # True
"Brno" and O # False
not O # True
"" or O # False

4.2 Numerical types
Four in total (int, long, float, complex), we will mostly use only int and float.
type (42) # <type 'int'>

type(49.2) # <type 'float'>

4.3 Operations

Basic arithmetic operations. Some of them also work with other data types!

3+ 5 # obvious

"Hello " + user # but also this!

5 -3

"bad" - "b" # this throws error! what did you ezxpect ..

10 * 3

"-" x5 # M- " this also works! (can be very useful)

3/ 2 # =1 ! careful, Python 2 needs to be told if the result ts

— float or int!

3.0 /2 # either like this

3 / float(2) # or like this (float / int, int / float, float / float all
<~ result in a float)

5 7% 4 # = 1; modulo (remainder = zbytek)

3 *x*x 2 # power

When we modify variables:

a=>5
a=a+ 3 #a =8
a += 1 # a = 9; easier, right?

Programming in geoinformatics 2017 Theory 1

a ++ # a = 10; this ©s ewven better

a -= 10 # also *= /=

also round (), math.floor(), ..

4.4 Comparisons

A" < "B" # less than (alphabet order)
lat <= 90 # less than or equal to

5 >3 # greater than

city == "Brno" # equal to

city != "Praha" # not equal to

4.5 Strings

"This is a string"
'And this one is too'

"It's because of this - apostrophes."

Usings substrings with [] — usually we count 1,2,3, ...; here we count 0,1,2,3, ...!

message = "hello everyone"

message [0] # 'h' + character at index O

message [-1] # 'e' + character at the last index

message [0:5] # 'hello' + from indexz O to (not including!) index 5
#

message[6:] from index 6 to the end

String operations:

"a" in message False

"hello " + user

#
"hello" in message # True

merging strings, we know this already

#

"-" % 5 string repetition, we know this too

A lot of string methods (str.find(), str.count(), str.isdigit(), len(str), str.replace()):

message.find("1") # 2
message.find("a") # -1 (e.g. there is no "a")
message.count ("1") # 2
len(message) # 14

message.replace("hello", "bye") # "bye everyone”

Programming in geoinformatics 2017 Theory 1

4.6 Data type conversion

int()

int(5.2) #5
int("5.2") # ERROR!
int ("5") # 5

float()

float(5) # 5.0

float("5.2") # 5.2

str()

str(42) # '42'
str(False) # 'False'
bool ()

a=>5

bool(a) # True

bool('False') # True !!

We do this often to avoid data type conflicts:

students = 5
print "Number of students: " + students # ERROUR

print "Number of students: " + str(students) # correct

	1 PyZo environment
	2 Variables
	2.1 Assigning values to variables

	3 Basic commands
	3.1 Print
	3.2 Input
	3.3 Comments

	4 Built-in types
	4.1 Truth testing
	4.2 Numerical types
	4.3 Operations
	4.4 Comparisons
	4.5 Strings
	4.6 Data type conversion

