Lecture 2

Lists, conditions, loops

Programming in geoinformatics

Autumn 2017

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

COORDINATE CHECK

© Ask the user for latitude and longitude with raw_input ()
and check if they are valid

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

COORDINATE CHECK

© Ask the user for latitude and longitude with raw_input ()
and check if they are valid

@ If the value is out of bounds, we change it to the nearest
valid one:

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

COORDINATE CHECK

© Ask the user for latitude and longitude with raw_input ()
and check if they are valid

@ If the value is out of bounds, we change it to the nearest
valid one:

o latitude: (-90, 90)

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

COORDINATE CHECK

© Ask the user for latitude and longitude with raw_input ()
and check if they are valid

@ If the value is out of bounds, we change it to the nearest
valid one:

o latitude: (-90, 90)
o longitude: (-180, 180)

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

COORDINATE CHECK

© Ask the user for latitude and longitude with raw_input ()
and check if they are valid

@ If the value is out of bounds, we change it to the nearest
valid one:

o latitude: (-90, 90)
o longitude: (-180, 180)

© Example: 1at = 98 + 90

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

DO WE HAVE ENOUGH CARS?

@ Assign numeric values to variables carsAmount and
peopleAmount

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

DO WE HAVE ENOUGH CARS?

@ Assign numeric values to variables carsAmount and
peopleAmount

@ Assume that 5 people fit in a car

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

DO WE HAVE ENOUGH CARS?

@ Assign numeric values to variables carsAmount and
peopleAmount

@ Assume that 5 people fit in a car

© Print if you have enough cars for all the people

Autumn 2017 Lecture 2

L Conditions 1
Conditions Conditions 2

Conditions 3
Conditions 4

ELEVATION CLASSIFICATION

@ Write an if statement that will print how flat the terrain is
based on the relative elevation change

Autumn 2017 Lecture 2

L Conditions 1
Conditions Conditions 2

Conditions 3
Conditions 4

ELEVATION CLASSIFICATION

@ Write an if statement that will print how flat the terrain is
based on the relative elevation change
@ Terrain types:

Autumn 2017 Lecture 2

L Conditions 1
Conditions Conditions 2

Conditions 3
Conditions 4

ELEVATION CLASSIFICATION

@ Write an if statement that will print how flat the terrain is
based on the relative elevation change
@ Terrain types:

e 0-300 — flats

Autumn 2017 Lecture 2

L Conditions 1
Conditions Conditions 2

Conditions 3
Conditions 4

ELEVATION CLASSIFICATION

@ Write an if statement that will print how flat the terrain is
based on the relative elevation change
@ Terrain types:
e 0—-300 — flats
e 300 - 800 — low hills

Autumn 2017 Lecture 2

L Conditions 1
Conditions Conditions 2

Conditions 3
Conditions 4

ELEVATION CLASSIFICATION

@ Write an if statement that will print how flat the terrain is
based on the relative elevation change
@ Terrain types:
e 0—-300 — flats
e 300 - 800 — low hills
e 800 — 1500 — hills

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

ELEVATION CLASSIFICATION

@ Write an if statement that will print how flat the terrain is
based on the relative elevation change

@ Terrain types:

0 — 300 — flats

300 — 800 — low hills

800 — 1500 — hills

15004+ — mountains

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

ROCK, PAPER, SCISSORS

© Create the rock, paper, scissors game

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

ROCK, PAPER, SCISSORS

© Create the rock, paper, scissors game

@ Let the user make a choice (get a numerical value — 1 = rock,
2 = paper, 3 = scissors)

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

ROCK, PAPER, SCISSORS

© Create the rock, paper, scissors game

@ Let the user make a choice (get a numerical value — 1 = rock,
2 = paper, 3 = scissors)

© Create a bot variable with a random value:

import random
bot = random.randint(1,3)

Autumn 2017 Lecture 2

Conditions 1
Conditions 2
Conditions 3
Conditions 4

Conditions

ROCK, PAPER, SCISSORS

© Create the rock, paper, scissors game

@ Let the user make a choice (get a numerical value — 1 = rock,
2 = paper, 3 = scissors)

© Create a bot variable with a random value:

import random
bot = random.randint(1,3)

@ Check who won or if it's a tie

Autumn 2017 Lecture 2

Lists 1
Lists 2

LIST SuMS

@ Calculate the sum of random values in a list that is always 4

or 5 items long:
from random import random

numbers = [random(), random(), random(),
random(), random()]

or

numbers = [random(), random(), random(),
random()]

Autumn 2017 Lecture 2

Lists 1
Lists 2

LIST SuMS

@ Calculate the sum of random values in a list that is always 4
or 5 items long:
from random import random
numbers = [random(), random(), random(),
random(), random()]
or
numbers = [random(), random(), random(),
random()]

@ use: if condition, len() function and get the items with []
notation

Autumn 2017 Lecture 2

Lists 1
Lists 2

LIST SuMS

@ Calculate the sum of random values in a list that is always 4

or 5 items long:
from random import random

numbers = [random(), random(), random(),
random(), random()]

or

numbers = [random(), random(), random(),
random()]

Autumn 2017 Lecture 2

Lists 1
Lists 2

LIST SuMS

@ Calculate the sum of random values in a list that is always 4
or 5 items long:
from random import random
numbers = [random(), random(), random(),
random(), random()]
or
numbers = [random(), random(), random(),
random()]

@ use: if condition, len() function and get the items with []
notation

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

LINE TOPOLOGY

© Some terminology:

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

LINE TOPOLOGY

© Some terminology:
o Point: [4, 16]

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

LINE TOPOLOGY

© Some terminology:
o Point: [4, 16]
o Line: [[1,1], [2,5], [6.8]] (list of points)

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

LINE TOPOLOGY

© Some terminology:
o Point: [4, 16]
e Line: [[1,1], [2,5], [6,8]] (list of points)
o Multiline: [[[0, O], [1, 2]]. [[5. 1], [4. 8], [5, 10]]. [[1, 1]. [5. 4],
[8, 10], [6, 1]]] (list of lines)

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

LINE TOPOLOGY

© Some terminology:
o Point: [4, 16]
e Line: [[1,1], [2,5], [6,8]] (list of points)
o Multiline: [[[0, O], [1, 2]], [[5, 1], [4, 8], [5, 10]], [[1, 1], [5, 4],
[8, 10], [6, 1]]] (list of lines)
@ Points a..e are defined: a = [47,18]; b = [49,19]; c =
[48,18]; d= [44, 19]; e= [42, 17]

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

LINE TOPOLOGY

© Some terminology:
o Point: [4, 16]
e Line: [[1,1], [2,5], [6,8]] (list of points)
o Multiline: [[[0, O], [1, 2]], [[5, 1], [4, 8], [5, 10]], [[1, 1], [5,
[8, 10], [6, 1]]] (list of lines)
@ Points a..e are defined: a = [47,18]; b = [49,19]; c =
[48,18]; d= [44, 19]; e= [42, 17]

© Create three lines: 11 = [a, d]; 12 = [c, 4, b]; 13
[e, a, c]

o

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

LINE TOPOLOGY

© Some terminology:
o Point: [4, 16]
e Line: [[1,1], [2,5], [6,8]] (list of points)
o Multiline: [[[0, 0], [1, 2]], [[5, 1], [4, 8], [5, 10]], [[1, 1], [5,
[8, 10], [6, 1]]] (list of lines)
@ Points a..e are defined: a = [47,18]; b = [49,19]; c =
[48,18]; d= [44, 19]; e= [42, 17]
© Create three lines: 11 = [a, d]; 12 = [c, 4, b]; 13
[e, a, c]

o

@ Create a multiline that contains lines 11, 12, 13

Autumn 2017 Lecture 2

Homework 1

Homework 2
Homeworks

TOPOLOGY

© Some terminology:
o Point: [4, 16]
e Line: [[1,1], [2,5], [6,8]] (list of points)
o Multiline: [[[0, O], [1, 2]], [[5, 1], [4, 8], [5, 10]], [[1, 1], [5,
[8, 10], [6, 1]]] (list of lines)
@ Points a..e are defined: a = [47,18]; b = [49,19]; c =
[48,18]; d= [44, 19]; e= [42, 17]

© Create three lines: 11 = [a, d]; 12 = [c, 4, b]; 13
[e, a, c]

o

@ Create a multiline that contains lines 11, 12, 13

© Calculate centerLl, centerL2, centerL3 with average values of
lat and lon of the points in the line

Autumn 2017 Lecture 2

Homework 1

Homeworks FlermEses 2

POLYGON SIDES

@ Polygon is defined just like a line:
polygon = [[1,1], [2,5], [6,8]]

Autumn 2017 Lecture 2

Homework 1

Homeworks Homework 2

POLYGON SIDES

@ Polygon is defined just like a line:
polygon = [[1,1], [2,5], [6,8]]
@ Check how many sides it has and print whether:

Autumn 2017 Lecture 2

Homework 1

Homeworks Homework 2

POLYGON SIDES

@ Polygon is defined just like a line:
polygon = [[1,1], [2,5], [6,8]]
@ Check how many sides it has and print whether:
e it's not a valid polygon (has less than three sides)

Autumn 2017 Lecture 2

Homework 1

Homeworks Homework 2

POLYGON SIDES

@ Polygon is defined just like a line:
polygon = [[1,1], [2,5], [6,8]]
@ Check how many sides it has and print whether:

e it's not a valid polygon (has less than three sides)
e it's a triangle

Autumn 2017 Lecture 2

Homework 1

Homeworks Homework 2

POLYGON SIDES

@ Polygon is defined just like a line:
polygon = [[1,1], [2,5], [6,8]]
@ Check how many sides it has and print whether:

e it's not a valid polygon (has less than three sides)
e it's a triangle
e it has four sides

Autumn 2017 Lecture 2

Homework 1

Homeworks Homework 2

POLYGON SIDES

@ Polygon is defined just like a line:
polygon = [[1,1], [2,5], [6,8]]
@ Check how many sides it has and print whether:

e it's not a valid polygon (has less than three sides)
e it's a triangle

e it has four sides

e it's a more complex polygon

Autumn 2017 Lecture 2

	Conditions
	Conditions 1
	Conditions 2
	Conditions 3
	Conditions 4

	Lists
	Lists 1
	Lists 2

	Homeworks
	Homework 1
	Homework 2

