
Programming in geoinformatics 2017 Theory 2

1 Python syntax

Code is separated by whitespace (spaces) and special characters (e.g. =, :, (,)). Blocks
of code are indented by 4 spaces:

no indentation
first indent level

indent level 2
still level 2

back to level one

2 Conditionals

Conditionals allow us to change the program behaviour depending on variable / input
values.

2.1 IF statement

If the condition is true, run the indented code. If the condition is false, skip the indented code:

if (city == "Brno"): # Mind the ":"!
print "Welcome to the seminar!"

if (cityPopulation > 1000000):
print "What a big city!"

2.2 ELSE, (ELIF)

If the first condition is false and else statement is present (there doesn’t have to be an else),
the following indented block of code is executed:

if (city == "Brno"):
print "Welcome to the seminar!"

else:
print "Maybe next time?"

if temperature < 0: # the parethesis don't always have to be there!
print "Looks like it's quite cold."
print "Maybe you can go ice skating?"

else:
print "Water is not frozen yet!"

Elif is basically a short way to type "else: if (condition):" → "elif (condition):"

1

Programming in geoinformatics 2017 Theory 2

if (temperature > 50):
print "Stay home if you can."

elif (temperature < -25):
print "Stay home if you can."

elif (temperature < 10):
print "Take a jacket."

else:
print "Enjoy the sunny day (if it's not rainy)!"

2.3 Logical operators

We can extend conditions and make more complex checks:

if (temperature > 50 or temperature < -25): # save two lines of code
compared to elif()↪→

print "Stay home if you can."
elif (temperature < 10):

print "Take a jacket."
else:

print "Enjoy the sunny day (if it's not rainy)!"

Not reverses the boolean value.

haveWeapon = True
policeman = False
polite = True

if (haveWeapon and not polite):
print "The bank is waiting."

if (policeman and not haveWeapon):
print "Get a weapon, quick!"

if (polite and policeman):
print "Watch out near the bank."

2.4 Nesting conditions

feelingSick = True
money = 150
car = False

if (feelingSick):

2

Programming in geoinformatics 2017 Theory 2

if (car):
print "Drive to the hospital."

elif (money > 100000):
print "Take a taxi, whatever."

else:
print "Take a bus."

else:
if (car and money > 100):

print "Plan a trip somewhere."
else:

print "At least you are not sick."

3 Lists

Data structure useful for storing sequence of values. Each element of the sequence has a position
= index, the same as with strings! (The first element has index 0 again). Lists can be operated
very similarly to strings!

list containing only strings
cities = ["Praha", "Brno", "Ostrava", "Pardubice", "Jihlava"]

list containing only numbers
coords = [49.1876, 16.3273, 420.3]

list with mixed value types
row = [0, True, "Brno", 377440, 2, 49.2, 16.6, ["MUNI", "VUT", "MENDELU",

"VFU", "JAMU", "UNOB"]]↪→

3.1 Accessing list values

Again, the same as with strings:

print cities[1] # "Brno" → returns string
print cities[2:4] # ["Ostrava", "Pardubice"] → returns list

3.2 Updating list values

We can update list values with the [] notation (strings cannot do that!):

cities[3] = "Vidnava"
print cities # ['Praha', 'Brno', 'Ostrava', 'Vidnava', 'Jihlava']
cities[3:] = ["Zlín", "Znojmo"]

3

Programming in geoinformatics 2017 Theory 2

print cities # ['Praha', 'Brno', 'Ostrava', 'Zlín', 'Znojmo']

list.insert(index, item) – put item at selected index (and move the rest of the items) → insert
doesn’t remove anything.

cities.insert(0, "České Budějovice")
print cities # ['České Budějovice', 'Praha', 'Brno', 'Ostrava', 'Zlín',

'Znojmo']↪→

list.append(item) – add an item to the end of the list

cities.append("Vrchlabí")
print cities # ['České Budějovice', 'Praha', 'Brno', 'Ostrava', 'Zlín',

'Znojmo', 'Vrchlabí']↪→

del – remove selected items:

del cities[0] # remove first item → ['Praha', 'Brno', 'Ostrava', 'Zlín',
'Znojmo', 'Vrchlabí']↪→

del cities[3:] # remove fourth up to the last value
print cities # ['Praha', 'Brno', 'Ostrava']
del cities[0:] # delete all values → []
del cities # delete the whole variable → NameError: name 'cities' is not

defined↪→

list.remove(item) – remove the first occurrence of item:

wallet = [100, 100, 200, 500, 5000]
wallet.remove(5000)
print wallet # [100, 100, 200, 500]
wallet.remove(100) # only the first occurrence is removed
print wallet # [100, 200, 500]

3.3 Operations with lists

len(list) – return list length (just like string).
concatenation with + – merging lists:

cities = ["Brno", "Praha"]
castles = ["Veveří", "Trosky", "Špilberk"]
places = cities + castles + ["Česká republika"]

value in list – returns True if a value is in a list:

4

Programming in geoinformatics 2017 Theory 2

city = raw_input("What city do you live in? ")
czechCities = ["Praha", "Brno", "Ostrava"] # etc.

if city in czechCities:
print "Looks like you live in the Czech Republic!"

else:
print "Welcome to the Czech Republic, hope you like it here!"

max(list), min(list) – find the maximum / minimum values in a list

regionsPopulation = [1562, 45847, 15454, 1521, 48572, 876, 6797]
print max(regionsPopulation) # 48572
print max(regionsPopulation) # 876

list.count(item) – count how many times item appears in a list (string is again the same):

students = ["Andrej", "Daniel", "Abdul", "Kristína", "Kristýna", "Martina",
"Annamária", "Ondřej", "Simon", "Pavla", "Lukáš", "Hana",
"Kristýna", "Jaroslav"]

↪→

↪→

print students.count("Kristýna") # → 2

list.index(item) – returns the index of the first occurrence of item in the list. This is the
equivalent of string.find(item) (find doesn’t work with lists!):

students.index("Kristína") # → 3

list.reverse() – reverse the whole list. This works in place! Also, reverse doesn’t take any
arguments!

students.index("Kristína") # → 10

3.4 List conversion

string.split(separator) – convert string to list, where every list items are separated by the
separator in the string.
Useful e.g. for storing first and last names:

cities = "Brno, Praha, Ostrava, Znojmo"
cities = cities.split(", ")
print cities # cities variable changed to ['Brno', 'Praha', 'Ostrava',

'Znojmo']↪→

5

Programming in geoinformatics 2017 Theory 2

Tip

We can use a shorthand variable definition (if we know the name is only two words long,
otherwise it won’t make sense):

name = "George Lucas"
[first, last] = name.split(" ")

string.join(list) – converts list to string and joins items with the string. The argument is the
list we want to join!

route = ['Brno', 'Breclav', 'Bratislava', 'Gyor', 'Budapest']
print "Recommended route is: " + " - ".join(route)
Recommended route is : Brno - Breclav - Bratislava - Gyor - Budapest

3.5 Lists nesting

Useful in GI for rasters or other data storage:

parking area is just a line of parking places
paring_area = ['car1', False, ' False, 'car2', 'car3'] # 1 * 5 parking

places↪→

parking_area[2] # accesing car with index 2

car park has more "lines", is "2D"
car_park = [['car1', False, False], ['car2', 'car3', 'car4'], ['car5',

False, 'car6']] # 3 * 3 parking places↪→

parking _area[0][2] # accesing car with index 2 in "line" 1

raster = [[1, 24, 36], [8, 0, 9], [4, 255, 3]] # 3 * 3 raster

multi-storey parking building with "3D" parking - floor and "line"
parking_building = [[['car1', False], ['car2', 'car3']], [[False,

False], [False, 'car4']], [['car5', False], ['car6', 'car7']]] #
three floors, each with 2 lines with 2 parking slots

↪→

↪→

parking_building[1][0][1] # getting parking slot on the 2nd floor, 1st line
and 2nd position↪→

4 FOR cycle

Basic iteration – repeat block of code for every element in a sequence.

6

Programming in geoinformatics 2017 Theory 2

We can iterate over a string:

alphabet = 'abcdefghijklmnopqrstuvwxyz'
for letter in alphabet:

variable letter is declared to be one character of alphabet in every
iteration↪→

number of iterations is equal to len(alphabet)
print letter

Cycle through a list:

invitedPeople = ["Bob", "Alan", "Emily", "Gustav"]
for person in invitedPeople:

print "Send invitation to", person

This will print
'Send invitation letter to Bob'
'Send invitation letter to Alan'
'Send invitation letter to Emily'
'Send invitation letter to Gustav'

Use range() to create lists with incrementing numbers:

range(5) # → [0, 1, 2, 3, 4]
range(2,8) # → [2, 3, 4, 5, 6, 7]
range(1,18,3) # → [1, 4, 7, 10, 13, 16]

Useful for getting not only the value, but its index too:

for position in range(len(cities)):
print "City no.", position + 1, cities[position]

will print "City no. 1 Praha", "City no. 2 Brno"

Conditions inside cycles:

polygons = [
[[1,7], [1,3], [2,3], [2,7]], # polygon 1
[[1,1], [1,5], [3,3]], # polygon 2
[[0,0], [0,5], [2,10], [4,7], [3,10], [8,2]] # polygon 3
]

for polygon in polygons:
if len(polygon) < 3:

print "This is not a polygon!"

7

Programming in geoinformatics 2017 Theory 2

elif len(polygon) == 3:
print "This is a triangle"

elif len(polygon) == 4:
print "This has four sides (might be a square?)."

else:
print "This is a more complex polygon."

Creating a line with random coordinates:

import random # Loading some library for generating random numbers

length = 10 # for example
length = int(raw_input("How long should the line be? ")) # or we can ask

the user!↪→

line = []
for i in range(length):

coordinates = [random.random() * 1000, random.random() * 1000]
line.append(coordinates)

print line

8

	1 Python syntax
	2 Conditionals
	2.1 IF statement
	2.2 ELSE, (ELIF)
	2.3 Logical operators
	2.4 Nesting conditions

	3 Lists
	3.1 Accessing list values
	3.2 Updating list values
	3.3 Operations with lists
	3.4 List conversion
	3.5 Lists nesting

	4 FOR cycle

