
Programming in geoinformatics 2017 Theory 2

1 Cycles

1.1 FOR cycle

Basic iteration – repeat block of code for every element in a sequence.

We can iterate over a string:

alphabet = 'abcdefghijklmnopqrstuvwxyz'
for letter in alphabet:

variable letter is declared to be one character of alphabet in every
iteration↪→

number of iterations is equal to len(alphabet)
print letter

Cycle through a list:

invitedPeople = ["Bob", "Alan", "Emily", "Gustav"]
for person in invitedPeople:

print "Send invitation to", person

This will print
'Send invitation letter to Bob'
'Send invitation letter to Alan'
'Send invitation letter to Emily'
'Send invitation letter to Gustav'

Use range() to create lists with incrementing numbers:

range(5) # → [0, 1, 2, 3, 4]
range(2,8) # → [2, 3, 4, 5, 6, 7]
range(1,18,3) # → [1, 4, 7, 10, 13, 16]

Useful for getting not only the value, but its index too:

for position in range(len(cities)):
print "City no.", position + 1, cities[position]

will print "City no. 1 Praha", "City no. 2 Brno"

Conditions inside cycles:

polygons = [
[[1,7], [1,3], [2,3], [2,7]], # polygon 1
[[1,1], [1,5], [3,3]], # polygon 2
[[0,0], [0,5], [2,10], [4,7], [3,10], [8,2]] # polygon 3

1

Programming in geoinformatics 2017 Theory 2

]

for polygon in polygons:
if len(polygon) < 3:

print "This is not a polygon!"
elif len(polygon) == 3:

print "This is a triangle"
elif len(polygon) == 4:

print "This has four sides (might be a square?)."
else:

print "This is a more complex polygon."

Creating a line with random coordinates:

import random # Loading some library for generating random numbers

length = 10 # for example
length = int(raw_input("How long should the line be? ")) # or we can ask

the user!↪→

line = []
for i in range(length):

coordinates = [random.random() * 1000, random.random() * 1000]
line.append(coordinates)

print line

1.2 While

The while loop will run until a specified condition is met:

count = 5
while count < 5:

count += 30
print "Count has changed to: " + str(count)

print "Count is now bigger than 100, it is: " + str(count)

Simulating drawing cards in blackjack
total = 0
while total < 17:

2

Programming in geoinformatics 2017 Theory 2

total += 2 * random.randint(1,5)

if total > 21:
print "The dealer lost!"

else:
print "The dealer has " + str(total) + " points."

Be very careful about infinite loops:

i = 5
while i < 6:

print i

Note

Another way to break a while loop is to make the condition always true and break it when
some condition is met:

while True:
run some code
if some_condition:

break

2 Dictionaries

Another data type useful for storing data is a dictionary. We can iterate over it (same as with
lists), but we define our own keys for the stored items:

great way to store coordinates
coords = { "lat": 49.1876, "lon": 16.3273, "elev": 420.3 }

or attributes
row = {

"id": 0,
"city": True,
"name": "Brno",
"population": 377440,
"ranking": 2,
"latitude": 49.2,
"longitude": 16.6,
"universities": ["MUNI", "VUT", "MENDELU", "VFU", "JAMU", "UNOB"]

3

Programming in geoinformatics 2017 Theory 2

}

Items are accessed similarly to lists, but using our own keys:

print coords["lat"]
print row["population"]

if we don't have numbers as keys, this will not work:
print row[0]

but this will:
students = {

1: "Kristýna",
2: "Petr"

}
print students[1]
again, this will not:
print students[0]

Values can be of any type (integers, floats, strings, lists, dictionaries).
Some methods and operations for dictionaries:

a_dict = {'a': 156, 'b': 89, 'c': 41, 'd': 547}
print a_dict.items() # dict_items([('b', 89), ('a', 156), ('d', 547), ('c',

41)])↪→

print a_dict.keys() # dict_keys(['b', 'a', 'd', 'c'])
list(a_dict.keys()) # returns ['b', 'a', 'd', 'c']
print a_dict.values() # dict_values([89, 156, 547, 41])
list(a_dict.values()) # returns [89, 156, 547, 41]
print len(a_dict) # 4

get() returns None if key is not defined and not an error
print a_dict.get(4) # None
print a_dict.get('a') # 156

Why should you use dictionaries?
• switch-case (alternative to conditions):

time = int(input('what hour is it?')) # 10

what_to_do = {
5: 'you should be sleeping',

4

Programming in geoinformatics 2017 Theory 2

8: 'make a breakfast',
10: 'have a coffee',
15: 'go to shop',
20: 'have a shower'

}

print what_to_do[time] # have a coffee

• advanced constructions (simple alternative to databases):

countriesStats = {
'Nigeria' : {

'GDP': 1109000,
'rank': 20,
'languages': ['English']

},
'South Africa' : {

'GDP': 725004,
'rank': 30,
'languages': ['Zulu', 'Xhosa', 'Afrikaans', 'English']

},
'Ethiopia' : {

'GDP': 132000,
'rank': 65,
'languages': ['Amharic']

}
}

print countriesStats['Nigeria']['languages'] # ['English']

• Another examples are file formats JSON and GeoJSON (more on that the next time)

5

	1 Cycles
	1.1 FOR cycle
	1.2 While

	2 Dictionaries

