
Programming in geoinformatics 2017 Theory 4

1 Functions

It’s great that we can now use Python to find out lengths of lines, areas of polygons and generate
sample lines, if only we didn’t have to repeat the same code whenever we want to do something
…
Oh, wait:

from random import random

def randomLine(length):
line = []
for i in range(length):

line.append ([random() * 1000, random() * 1000])
return line

def calculateLength(line):
length = 0
for i in range(len(line) - 1):

length += ((line[i][0] - line[i+1][0]) ** 2 + (line[i][1] -
line[i+1][1]) ** 2) ** 0.5↪→

return length

We use it like this:
line = randomLine(5)
or:
print calculateLength(randomLine(10)) # e.g. 606.7983930932138

The function definition consists of:
• def keyword
• function’s name – similar to a variable name
• function’s expected arguments in parentheses – we can name them how we want (similar

to item in this for loop: for item in items:)
• code of the function in an indented block using the function’s arguments
• return statement containing the result of the function

Some simple examples:

fridge = {
"milk": 5,
"eggs": 4,
"cakes": 0

}

1

Programming in geoinformatics 2017 Theory 4

def buyEggs():
fridge["eggs"] += 3

def buyMilk():
fridge["milk"] += 1

def makeCake():
if (fridge["milk"] >= 2 and fridge["eggs"] >= 4):

fridge["milk"] -= 2
fridge["eggs"] -= 4
fridge["cakes"] += 1
print "We have a new cake in the fridge!"

else:
print "You don't have enough ingredients for a cake!"

1.1 Arguments

We can pass values to alter the function’s behaviour with arguments.

def buyEggs(amount):
print "Fridge before:", fridge
fridge["eggs"] += amount
print "Added", amount, "eggs into the fridge."
print "Fridge after:", fridge

and call it like this:
buyEggs(5)
Fridge before: {'cakes': 0, 'eggs': 4, 'milk': 5}
Added 5 eggs into the fridge.
Fridge after: {'cakes': 0, 'eggs': 9, 'milk': 5}

A good way to define functions is to set default values to arguments. This value will be applied
if the argument is not passed:

def buyEggs(amount = 6):
print "Fridge before:", fridge
fridge["eggs"] += amount
print "Added", amount, "eggs into the fridge."
print "Fridge after:", fridge

buyEggs()

2

Programming in geoinformatics 2017 Theory 4

Fridge before: {'cakes': 0, 'eggs': 4, 'milk': 5}
Added 6 eggs into the fridge.
Fridge after: {'cakes': 0, 'eggs': 10, 'milk': 5}

buyEggs(5)
Fridge before: {'cakes': 0, 'eggs': 10, 'milk': 5}
Added 5 eggs into the fridge.
Fridge after: {'cakes': 0, 'eggs': 15, 'milk': 5}

We might also have more refrigerators and want to do the whole shopping in one function:

fridges = {
"John": {

"eggs": 1,
"milk": 2,
"cakes": 0

},
"Ellen": {

"eggs": 0,
"milk": 1,
"cakes": 3

}
}

def buyGroceries(fridge, groceries):
for item in groceries:

if not item in fridges[fridge]: # in case we buy e.g. oranges
fridges[fridge][item] = groceries[item]

else:
fridges[fridge][item] += groceries[item]

buyGroceries("John", {"eggs": 10, "milk": 2, "oranges": 2})

We can also use *args and **kwargs (arguments and keyword arguments) if we e.g. don’t
know how many arguments we should expect (or to make it simpler):

def buyGroceries(fridge, **kwargs):
for key in kwargs:

if not key in fridges[fridge]:
fridges[fridge][key] = kwargs[key]

else:

3

Programming in geoinformatics 2017 Theory 4

fridges[fridge][key] += kwargs[key]

buyGroceries("John", eggs=10, milk=2, oranges=2) # keywords are
automatically handled as strings↪→

1.2 Variable scope – local vs. global

• variables declared inside functions are not defined outside – they are called local vari-
ables

• global variables are defined outside functions (or using global keyword) and can be
read from anywhere

This is often confusing!

1 color = "blue"
2

3 def changeColor(newColor):
4 color = newColor
5 print "Color changed to", color
6

7 changeColor("pink")
8 print color # blue

See, in the above code, color variable on line 1 is a global variable, but the color variable on
line 4 is a local variable and does not change the value of the global one.
But it gets worse …

color = "blue"
colors = {

"background": "gray",
"foreground": "teal"

}

def changeColor(newColor):
color = newColor
colors["background"] = newColor
print "Colors changed to", color

changeColor("pink")
print color # blue
print colors["background"] # pink – what?

One “doesn’t” work and the other does? Let’s not bother with that now and use global keyword
when you need to change global variables inside functions:

4

Programming in geoinformatics 2017 Theory 4

color = "blue"
colors = {

"background": "gray",
"foreground": "teal"

}

def changeColor(newColor):
global color
global colors
color = newColor
colors["background"] = newColor
print "Colors changed to", color

changeColor("pink")
print color # pink
print colors["background"] # pink

1.3 Return

Because you can’t access local variables outside their scope (the function they were defined in),
we use return statements:

def mean(numbers):
avg = float(sum(numbers))/len(numbers)
return avg

print mean([1,2]) # 1.5
print avg # NameError: name 'avg' is not defined → avg is a local variable

Note

We don’t really need local variables for simple functions:

def mean(numbers):
return float(sum(numbers))/len(numbers)

2 Import

Import is easy, we use either:
• import module:

5

Programming in geoinformatics 2017 Theory 4

import random
print random.random()

• from module import function1, function2, …:

from random import random, randint
print random(), randint(1,10)

or like this:

from random import *
be very careful using this

We can also use this to give structure to our project. Let’s save this code example as lineTools.py:

from random import random
def randomLine(length):

line = []
for i in range(length):

line.append ([random() * 1000, random() * 1000])
return line

def calculateLength(line):
length = 0
for i in range(len(line) - 1):

length += ((line[i][0] - line[i+1][0]) ** 2 + (line[i][1] -
line[i+1][1]) ** 2) ** 0.5↪→

return length

Now, you can import the content of this script to another script saved in the same directory:
script.py

import lineTools
print lineTools.randomLine()

Important: In PyZo, you have to run the code as a script! That is, Ctrl+Shift+E instead of
Ctrl+E.

3 JSON, GeoJSON

3.1 JSON

JSON is a file format used frequently to send data over the internet (https://en.wikipedia.
org/wiki/JSON#Data_types.2C_syntax_and_example). It uses similar data types as Python
(numbers, strings, booleans, lists, dictionaries).
JSON example:

6

https://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example
https://en.wikipedia.org/wiki/JSON#Data_types.2C_syntax_and_example

Programming in geoinformatics 2017 Theory 4

{
"firstName": "John",
"lastName": "Smith",
"isAlive": true,
"age": 25,
"address": {

"streetAddress": "21 2nd Street",
"city": "New York",
"state": "NY",
"postalCode": "10021-3100"

},
"phoneNumbers": [
{

"type": "home",
"number": "212 555-1234"

},
{

"type": "office",
"number": "646 555-4567"

},
{

"type": "mobile",
"number": "123 456-7890"

}
],
"children": [],
"spouse": null

}

In Python, the json module is useful for processing JSON data:

import json
data = {

"firstName": "John",
"lastName": "Smith",
"isAlive": True,
"age": 25

}
jsonData = json.dumps(data) # convert to a string formatted as JSON
print jsonData

7

Programming in geoinformatics 2017 Theory 4

print json.loads(jsonData) # convert to data structure from JSON string

3.2 GeoJSON

GeoJSON format specifications: https://tools.ietf.org/html/rfc7946

8

https://tools.ietf.org/html/rfc7946

Programming in geoinformatics 2017 Theory 4

Subset of JSON format used to handle spatial data, example:

{ "type": "FeatureCollection",
"features": [
{ "type": "Feature",

"geometry": {
"type": "Point",
"coordinates": [102.0, 0.5]

},
"properties": {

"prop0": "value0"
}

},
{ "type": "Feature",

"geometry": {
"type": "LineString",
"coordinates": [

[102.0, 0.0], [103.0, 1.0], [104.0, 0.0], [105.0, 1.0]
]

},
"properties": {

"prop0": "value0",
"prop1": 0.0

}
},
{ "type": "Feature",

"geometry": {
"type": "Polygon",
"coordinates": [

[[100.0, 0.0], [101.0, 0.0], [101.0, 1.0],
[100.0, 1.0], [100.0, 0.0]]

]
},
"properties": {

"prop0": "value0",
"prop1": {"this": "that"}

}
}

]
}

9

Programming in geoinformatics 2017 Theory 4

The root element is always a single GeoJSON object. It’s type is one of the following:
• Point, MultiPoint
• LineString, MultiLineString
• Polygon, MultiPolygon
• GeometryCollection
• Feature
• FeatureCollection

Read through the specification and the examples at https://en.wikipedia.org/wiki/GeoJSON.

You can save data as GeoJSON from QGIS (right click on a layer → Save As) or using other
tools (https://mygeodata.cloud/converter/shp-to-geojson).

10

https://en.wikipedia.org/wiki/GeoJSON
https://mygeodata.cloud/converter/shp-to-geojson

	1 Functions
	1.1 Arguments
	1.2 Variable scope – local vs. global
	1.3 Return

	2 Import
	3 JSON, GeoJSON
	3.1 JSON
	3.2 GeoJSON

