Lecture 7

Exercises

Programming in geoinformatics

Autumn 2017

Exercises Exercise 1

Exercise 2

EXERCISE 1

With a list such as:
a=1[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]
@ create a function smallerThan(list, number) which will return a new list with

numbers from the original 1ist smaller than number

@ if no number is specified when the function is called, ask the user for the number

Example:

print smallerThan(a, 5) # [1, 1, 2, 3]
print smallerThan([4, 8, 93, 763, 34], 50) # [4, 8, 34]

Autumn 2017 Lecture 7

Exercises Exe e 1
Exercise 2

EXERCISE 2

@ create a function checkPalindrome (word), which will check whether a word (or
text) is a palindrome (is symmetrical, the first letter is the same as last, etc.)

print checkPalindrome("racecar") # True
print checkPalindrome("programming") # False

@ you don’t have to (but can) use loops

Autumn 2017 Lecture 7

Homework 1

Homework

Bonus Homework

HOMEWORK 1

@ create a function generatePassword(length, specialChars=False), which
will generate a random password of specified length (using the same password
on more accounts is dangerous) from lowercase and uppercase letters and digits

@ if special characters are provided when calling the function, include these
characters as well

@ use the following as baseline:

import random
import string
characters = string.ascii_letters

numbers = "".join([str(n) for n in range(10)]) # the same as
— "0123456789"

@ hint: use random.choice() function and concatenate all the possible characters

Example:

print generatePassword(10) # kJmgcCBLTK
print generatePassword(10, ",.-=!7") # tne==X20XN

Autumn 2017 Lecture 7

Homework 1

Homework

Bonus Homework

HoMEWORK 1 BONUS

2 points

@ modify the function to
generatePassword(length, specialChars=False, readable=False), which
will also remove any visually similar characters from the set of possible
characters (e.g. 0, O, | - lowercase L, | - uppercase |, 1, etc.) to avoid mistakes
when copying and pasting passwords vs. reading them from the screen.

@ make all sets of possible characters (lowercase letters, uppercase letters, digits,
special characters) as likely to appear in the password (pick a category at
random for each character first and then a random character from the category)

@ modify the function so it's possible to choose categories from which the
characters will be picked (so it's possible to generate passwords only from
lowercase letters and special characters)

@ check whether the generated password includes characters from all the categories
provided. If it doesn’t, generate a new one (until all categories are represented)

Autumn 2017 Lecture 7

Homework 1
Homework 2
Homework 3
Hom 4
Bonus Homework

Homework

HOMEWORK 2

@ create a function getPosition(), which will return a position (coordinates) of a
the "x" character in a random board (some board game for example)

@ use the following as baseline:

import random

size = random.randint(3,8)

x, y = random.randint(1l,size-1), random.randint(1l,size-1)
board = [["0"] * size for i in range(size)]

board[x] [y] = "x"

for row in board:

print " ".join(row) # for checking visually

print ""

def getPosition():
your code here

@ hint: use in keyword and loops

Autumn 2017 Lecture 7

Homework

Bonus Homework

HOMEWORK 3

@ create a function factorial(n) which will return the factorial of specified
number n (n! — factorial of n)

n=nx(n-1)x(n—2)x..x2x1

@ hint: use loops if you want OR you can try using the function inside itself
recursively!

Example:

print factorial(8) # 40320

Autumn 2017 Lecture 7

Homework 1
Homework 2
Homework 3
Homework 4
Bonus Homework

Homework

HOMEWORK 4

Create a function boundingBox (geometry), which takes a geometry object as an
argument (e.g. [[1, 0], [3, 41, [7, 211) and returns its bounding box (MBR —
minimum bounding rectangle) — rectangle which contains the whole object.

Example:

print boundingBox([[1, 01, [3, 41, [7, 211) # [[1, o], [7, 4]] -
— lower left, upper right corner coordinates

1 2 3 4 5 6 7

Autumn 2017 Lecture 7

Homework

Bonus Homework

BoNus HOMEWORK

3 points

@ create a function BBox0Overlap(bbox1l, bbox2), which will return whether two
bounding boxes overlap.

@ you should also consider the following situation:

@ if you don't figure out how to check this type of situation, submit your code
anyway for less points

Autumn 2017 Lecture 7

	Exercises
	Exercise 1
	Exercise 2

	Homework
	Homework 1
	Homework 2
	Homework 3
	Homework 4
	Bonus Homework

