
Lecture 7
Exercises

Programming in geoinformatics

Autumn 2017

. .

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Exercise 1
Exercise 2

Exercise 1

With a list such as:

a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

create a function smallerThan(list, number) which will return a new list with
numbers from the original list smaller than number
if no number is specified when the function is called, ask the user for the number

Example:

print smallerThan(a, 5) # [1, 1, 2, 3]
print smallerThan([4, 8, 93, 763, 34], 50) # [4, 8, 34]

Autumn 2017 Lecture 7

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Exercise 1
Exercise 2

Exercise 2

create a function checkPalindrome(word), which will check whether a word (or
text) is a palindrome (is symmetrical, the first letter is the same as last, etc.)

print checkPalindrome("racecar") # True
print checkPalindrome("programming") # False

you don’t have to (but can) use loops

Autumn 2017 Lecture 7

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Homework 1
Homework 2
Homework 3
Homework 4
Bonus Homework

Homework 1
create a function generatePassword(length, specialChars=False), which
will generate a random password of specified length (using the same password
on more accounts is dangerous) from lowercase and uppercase letters and digits
if special characters are provided when calling the function, include these
characters as well
use the following as baseline:

import random
import string
characters = string.ascii_letters
numbers = "".join([str(n) for n in range(10)]) # the same as

"0123456789"↪→

hint: use random.choice() function and concatenate all the possible characters
Example:

print generatePassword(10) # kJmgcCBlTK
print generatePassword(10, ",.-=!?") # tne==X?OXN

Autumn 2017 Lecture 7

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Homework 1
Homework 2
Homework 3
Homework 4
Bonus Homework

Homework 1 Bonus

2 points

modify the function to
generatePassword(length, specialChars=False, readable=False), which
will also remove any visually similar characters from the set of possible
characters (e.g. 0, O, l - lowercase L, I - uppercase I, 1, etc.) to avoid mistakes
when copying and pasting passwords vs. reading them from the screen.
make all sets of possible characters (lowercase letters, uppercase letters, digits,
special characters) as likely to appear in the password (pick a category at
random for each character first and then a random character from the category)
modify the function so it’s possible to choose categories from which the
characters will be picked (so it’s possible to generate passwords only from
lowercase letters and special characters)
check whether the generated password includes characters from all the categories
provided. If it doesn’t, generate a new one (until all categories are represented)

Autumn 2017 Lecture 7

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Homework 1
Homework 2
Homework 3
Homework 4
Bonus Homework

Homework 2

create a function getPosition(), which will return a position (coordinates) of a
the "x" character in a random board (some board game for example)
use the following as baseline:

import random
size = random.randint(3,8)
x, y = random.randint(1,size-1), random.randint(1,size-1)
board = [["o"] * size for i in range(size)]
board[x][y] = "x"
for row in board:
print " ".join(row) # for checking visually
print ""

def getPosition():
your code here

hint: use in keyword and loops

Autumn 2017 Lecture 7

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Homework 1
Homework 2
Homework 3
Homework 4
Bonus Homework

Homework 3

create a function factorial(n) which will return the factorial of specified
number n (n! → factorial of n)

n! = n × (n − 1) × (n − 2) × … × 2 × 1

hint: use loops if you want OR you can try using the function inside itself
recursively!

Example:

print factorial(8) # 40320

Autumn 2017 Lecture 7

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Homework 1
Homework 2
Homework 3
Homework 4
Bonus Homework

Homework 4
Create a function boundingBox(geometry), which takes a geometry object as an
argument (e.g. [[1, 0], [3, 4], [7, 2]]) and returns its bounding box (MBR –
minimum bounding rectangle) – rectangle which contains the whole object.

Example:

print boundingBox([[1, 0], [3, 4], [7, 2]]) # [[1, 0], [7, 4]] →
lower left, upper right corner coordinates↪→

Autumn 2017 Lecture 7

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Exercises
Homework

Homework 1
Homework 2
Homework 3
Homework 4
Bonus Homework

Bonus Homework
3 points

create a function BBoxOverlap(bbox1, bbox2), which will return whether two
bounding boxes overlap.

you should also consider the following situation:

if you don’t figure out how to check this type of situation, submit your code
anyway for less points

Autumn 2017 Lecture 7

	Exercises
	Exercise 1
	Exercise 2

	Homework
	Homework 1
	Homework 2
	Homework 3
	Homework 4
	Bonus Homework

