Structural Virology

Lecture 2

Pavel Plevka

Infectious virus particle "virion"

Carrier of genetic information from cell to cell:

- "extracellular organelle"
- packages viral genome
- escapes from infected cell
- survives transfer from cell to cell
- attaches, penetrates, initiates replication in new host cell

Virus structures

Equivalence

Equivalence

Enveloped Viruses

Viruses with an Internal Lipid Membrane

Levels of description of protein structures

Levels of description of RNA structures

Picornavirus virion

Molecular components of virions

DNA genomes of viruses

ss, linear Parvoviruses ds, linear Poxviruses ss, circular Phage \phiX174 ds, circular Baculoviruses

RNA genomes of viruses

ss, linear

Tobacco mosaic virus

ds, linear

Reoviruses

ss, circular

Hepatitis delta virus

Sizes of virus genomes

Hepatitis B virus 3.2kB

Phage lambda 48kB

Pandoravirus

TNSV

Coronaviruses

1.1-2.5MB

1239B (RNA)

33kB (RNA)

Mimivirus

1.2MB

E. coli ~2000nm (bacterium)

Genomes of cellular organisms (kB)

Secondary structures in ssRNA genomes

Internal Ribosome Entry Site in poliovirus

Modifications of genome ends

dsDNA

Adenoviruses Phage PRD1 (E. coli)

Hepatitis B virus

More end modifications (ssRNA)

Poliovirus Cowpea mosaic virus

Barley yellow dwarf virus

SARS coronavirus Retroviruses

Black beetle virus

Cucumber mosaic virus

dsRNA genome modifications

Rotaviruses

Infectious pancreatic necrosis virus

(Macro)-molecules non-covalently associated with virus genomes

Zinc finger motif

Histone core

Terminal repeats in virus genomes

Main types of virion structure

Genomes

dsDNA ssDNA dsRNA ssRNA

Icosahedral, naked

Icosahedral, enveloped

√

Helical, naked

√

Helical, enveloped

Adenovirus virion

Phage T7

Learning outcomes

- describe the components of virions
- illustrate the variety of virus genomes
- outline the functions of virus structural proteins
- define the terms 'helical symmetry' and 'icosahedral symmetry'
- describe the virions of a selection of naked and enveloped viruses

Reading

Why / when / for what are structures important?

Virus transmission

Plant viruses

- Vectors
- insects
- mites
- nematodes
- fungi

Human and animal viruses

- · via the air, e.g. influenza virus
- · via food and water, e.g. rotaviruses
- sexually, e.g. HIV
- via vectors, e.g. yellow fever virus

Insects

Potato virus Y Cauliflower mosaic virus

Beet yellows virus Bean yellow mosaic virus

Leafhoppers

Rice dwarf virus

Whiteflies

Tomato yellow leaf curl virus

Beetles

Maize chlorotic mottle virus

Mites

Mites

Ryegrass mosaic virus

Nematodes

Grapevine fanleaf virus

Nematodes

Living Vectors

Mosquitoes

Yellow fever virus West Nile virus Chikungunya virus Humans

Midges

Bluetongue virus

Sheep

Ticks

Louping ill virus

Sheep

Inanimate Vectors

Syringes and Needles

Hepatitis B virus HIV

Humans

Baculovirus transmission

Non-vector transmission of vertebrate viruses

Transmission route	Examples of viruses transmitted
Horizontal transmission	
Respiratory tract	Influenza viruses (mammals)
	Common cold viruses
	Measles virus
Intestinal tract	Influenza viruses (birds)
	Rotaviruses
Abrasions and wounds	Papillomaviruses
	Rabies virus
Genital tract	HIV
	Papillomaviruses
Vertical transmission	
Mother to foetus via the placenta	Rubella virus
Mother to baby via milk	HIV

Virus infection X cell cycle

Restriction endonucleases RNAi response

Learning outcomes

- describe the modes of transmission of plant viruses and animal viruses
- evaluate the roles of vectors in virus transmission
- discuss the immune mechanisms encountered by an animal virus when it enters the body of a new host

Attachment and entry of viruses into cells

- 1. Attachment
- 2. Entry
- 3. Transcription
- 4. Translation
- 5. **G**enome replication
- 6. Assembly
- 7. Exit

Virus receptors

Attachment and entry of a naked virion

Attachment and entry of an enveloped virion

Virus membrane fusion

© 2012 John Wiley & Sons Ltd. www.wiley.com/college/carter

Virus membrane fusion

Intracellular transport of viruses

Intracellular transport of viruses

Phage phi812 genome injection

Phage MS2 infection

Learning outcomes

- outline a generalized scheme of virus replication involving seven steps
- describe how animal viruses attach to and enter their host cells
- differentiate between the entry mechanisms of naked and enveloped animal viruses
- describe the roles of cell components in the delivery of some viral genomes to the nucleus
- outline the infection mechanisms of phages