Structural Virology

Lecture 9

Pavel Plevka

Bacteriophages

2

Bacteriophages

Phages of gram positive and gram negative bacteria

Phage entry

Viral attachment to host cell pilus

Swiss Institute of Bioinformatics

Host cytoplasm

Viral attachment to host cell flagellum

Degradation of host cell envelope components during virus entry

Phage penetration into host cytoplasm

Genome ejection through host cell envelope

Myoviridae

Siphoviridae

Podoviridae₁₀

Viral contractile tail ejection system

Viral long flexible tail ejection system

Viral short tail ejection system

© ViralZone 2013 Swiss Institute of Bioinformatics

GRAM +

Viral penetration into host cytoplasm via pilus retraction

Fusion of virus membrane with host outer membrane

Binding the the entry receptor Disintegration of virion capsid . Fusion with host outer membrane. Probable cell wall digestion.

39

Release of viral genome into the periplasmic space

VIRUSES WITH EXTERNAL MEMBRANE

Fusion of virus external membrane with host outer membrane Probable cell wall digestion. Release of the capsid into the periplasmic space

Host cytoplasm

© ViralZone 2013 Swiss Institute of Bioinformatics

Cystoviridae

Corticoviridae

Phage-bacteria interactions

Superinfection exclusion

Modulation of host host virulence by virus

Degradation of host chromosome by phage

Phage host transcription shutoff

Inhibition of host DNA replication by virus

Toxin-antitoxin systems as antiviral defense

Restriction-modification system evasion by virus

DNA end degradation evasion by virus

Phage genome packaging

Tail assembly

Tail assembly of Lambda-like visuses

© ViralZone 2014 Swiss Institute of Bioinformatics

Phage extrusion

Holin/endolysin lysis Pinholin/SAR endolysin lysis

0. Lytic proteins accumulation

1. Inner membrane disruption

2. Peptidoglycan disruption

3. Outer membrane fusion with inner membrane

Holin/endolysin/spanin cell lysis by phage

Phage budding

Plasmaviridae

Bacteriophage MS2

26 nm →

Enterobacteria phage MS2

MS2 life-cycle

Leviviridae gene expression regulation

Enterobacteria phage MS2

The gene for the most abundant protein, the coat protein, can be immediately translated.

The translation start of the replicase gene is normally hidden within RNA secondary structure, but can be transiently opened as ribosomes pass through the coat protein gene.

Replicase translation is also shut down once large amounts of coat protein have been made; coat protein dimers bind and stabilize the RNA "operator hairpin", blocking the replicase start.

The start of the maturation protein gene is accessible in RNA being replicated but hidden within RNA secondary structure in the completed MS2 RNA; this ensures translation of only a very few copies of maturation protein per RNA. The lysis protein gene can only be initiated by ribosomes that have completed translation of the coat protein gene and "slip back" to the start of the lysis protein gene, at about a 5% frequency.

Leviviridae replication

phiX174

phiX174 genome

ssDNA(+) genome of 4.4 to 6.1kb

phiX174 rolling circle genome replication

Innoviridae – M13

Non-enveloped, rod of filaments of 7nm in diameter and 700 to 2000nm in length. Helical capsid with adsorption proteins on one end.

Viral penetration into host cytoplasm via pilus retraction

Innoviridae – gene product III

M13 genome (rolling circle replication)

Myoviridae – T4

T4 – genome

Podoviridae – phage T7

direction of gene expression

Siphoviridae – theta replication

Bidirectional DNA replication: initiation

Siphoviridae – rolling circle replication

Rolling circel dsDNA replication: initiation

Learning outcomes

- discuss the replication cycle and control of gene expression in ssRNA coliphages
- outline the infection process of dsRNA phages
- review the biology of the filamentous and icosahedral ssDNA phages
- describe the structure and replication cycle of dsDNA phages

CRISPR-cas genome editing

Virus origins

Possible Virus Origins:
RNA molecules that existed before cells
cell components
micro-organisms.

Viruses evolve as a result of:

errors during nucleic acid replication;
recombination between virus strains;
reassortment between virus strains;
acquisition of cell genes.

Evolution of viruses can be monitored by sequencing their genomes and creating phylogenetic trees:

New viruses may evolve as a result of viruses infecting new host species, e.g. HIV-1 and HIV-2.

Scale: billion years before present

Potential virus precursors

Gene transfer agents

Nature Reviews | Microbiology

Polymerase error rates

Quasispecies

Quasispecies genomes

Recombination

Copy-choice recombination

Genome fragment re-assortment

LTR retrotransposons

- Progressive hypothesis
- Regressive hypothesis
- Virus-first hypothesis
- Nucleocytoplasmic large DNA viruses as precursors of nuclei in eukaryotes

Learning outcomes

- evaluate theories on the origins of viruses
- explain how virus evolution occurs through mutation, recombination and re-assortment
- assess the value of virus genome sequencing in studies of virus origins and evolution
- assess the threats posed to man and animals by rapid virus evolution
- discuss the co-evolution of viruses and their hosts