1 Microfluidics – „Lab on a Chip“ Bi7430 Molecular Biotechnology Outline  introduction to microfluidics  physics of micro-scale  lab on a chip applications  life and medical science  protein and metabolic engineering  design and fabrication  sensing and detection Lab on a Chip Concept p r e p a r a t i o n a n a l y s i si n c u b a t i o n c o l l e c t i o n p r e - t r e a t m e n t Microfluidics  „ b e h av i o r, c o n t ro l a n d m a n i p u l a t i o n o f f l u i d s g e o m e t r i c a l l y c o n s t ra i n e d t o a s m a l l d i m e n s i o n s “  d i m e n s i o n s ( 1 ´ - 1 0 0 ´ m m )  v o l u m e s ( n L , p L , f L )  u n r i v a l l e d p r e c i s i o n o f c o n t r o l  ( u l t r a ) h i g h a n a l y t i c a l t h r o u g h p u t  r e d u c e d s a m p l e a n d p o w e r c o n s u m p t i o n  f a c i l e p r o c e s s i n t e g r a t i o n a n d a u t o m a t i o n Nature 507, 181 (2014) 2 Revolution in Electronics Size (nm) Price (USD) Vacuum tube 100 10 Trasistors 10 1 Microchip 0.000 010 0.000 000 100 Revolution in Science? Volume (mL) Throughput (assays/day) Test tube 1 000 10 Microtiter plate 100 1 000 Microfluidic chip 0.000 001 1 000 000 Nature Biotechnol. 21, 1179 (2003)  c o n t i n u o u s - f l o w m i c ro f l u i d i c s m a n i p u l a t i o n o f c o n t i n u o u s l i q u i d f l o w t h r o u g h m i c r o - f a b r i c a t e d c h a n n e l s  d ro p l e t - b a s e d m i c ro f l u i d i c s m a n i p u l a t i n g d i s c r e t e v o l u m e s o f f l u i d s i n i m m i s c i b l e p h a s e s  d i g i t a l m i c ro f l u i d i c s d r o p l e t s m a n i p u l a t e d o n a s u b s t r a t e u s i n g e l e c t r o - w e t t i n g Concepts in microfluidics Novel Physics of Micro-Scale  v i s c o s i t y, s u r f a c e t e n s i o n a n d c a p i l l ar y f o rc e s d o m i n a t e  l a c k o f t u r b u l e n t p h e n o m e n a + n o n t r i v i a l c h e m i c a l g r a d i e n t s t o s t u d y c h e m o t a x i s  a b s e n c e o f d e n s i t y - d r i v e n c o n v e c t i o n + f r e e i n t e r f a c e d i f f u s i o n , e f f i c i e n t p r o t e i n c r y s t a l l i z a t i o n k i n e t i c s  s t r o n g s h e a r i n g f o r c e s + f a s t m i x i n g k i n e t i c s o f p r o t e i n f o l d i n g a n d / o r c a t a l y s i s Nature Biotechnol. 20, 826 (2002) PNAS 99, 16531 (2002)Appl. Phys. Lett. 83, 4664 (2003) 3 Lab on a Chip applications  a n a l y t i c s a n d c h e m i s t r y  P C R a n d s e q u e n c i n g  p o i n t o f c a re d i a g n o s t i c s  p h a r m a c o l o g y  c l i n i c a l s t u d i e s  s i n g l e c e l l b i o l o g y  h i g h t h ro u g h p u t b i o l o g y Polymerase chain reaction  c l a s s i c a l P C R  s l o w h e a t i n g / c o o l i n g c y c l e s  P C R t u b e s ( s t r i p s ) , 9 6 - w e l l M T P  v o l u m e 5 0 t o 5 0 0 m L K a r y M u l l i s N o b e l P r i z e i n 1 9 9 3 Digital polymerase chain reaction  d i g i t a l P C R  1 n a n o l i t e r d r o p l e t s  2 0 0 0 0 d r o p l e t s p e r r u n Next-generation sequencing  p a ra l l e l i za t i o n o f s i n g l e m o l e c u l e p y ro s e q u e n c i n g  4 5 4 P y ro s e q u e n c in g ( R o c h e ) w a t e r i n o i l d r o p l e t s 1 p i c o l i t e r ( 1 0 - 1 2 l i t e r s ) 1 m i l . r e a d s / r u n , 1 0 U S D / M b a s e F r e d e r i c k S a n g e r N o b e l P r i z e i n 1 9 8 0 4  2 0 0 3 : 1 3 y e a r s , 3 b i l l i o n U S D  2 0 1 6 : d a y s , < 1 , 0 0 0 U S D H G P R o c h e 4 5 4 I l l u m i n a H i S e q X Revolution in Science? Organs on chip  3 D c h i p s m i m i c k i n g h u m a n ’s p h y s i o l o g ic a l re s p o n s e s ( e . g . , p a t h o l o g i c al , p h a r m a c o k i n e t i c , t ox i c o l o g i c a l )  re a l i s t i c i n v i t r o m o d e l c l o s e r t o i n v i v o c e l l e n v i ro n m e n t ( e . g . , m e c h a n i c a l s t ra i n , p a tt e r n i n g , f l u i d s h e a r s t re s s e s )  c a n re p l a c e e x p e n s i v e a n d c o n t ro v e rs i a l a n i m a l t e st i n g Nature 471, 661–665 (2011) Biophysical Journal 94(5) 1854–1866 m i c ro p i l l a rf l a t s u r f a c e L u n g H e a r t S p l e e n B o n e N e u r o v a s c u l a r A r t e r y K i d n e y I n t e s t i n e Organs on chip Human on chip concept  c o r r e c t l i m i ta t i o n s o f o r g a n s i s o l a t i o n  w h o l e b o d y b i o m i m e t i c d e v i c e s 5 Sequence diversity No. Coverage (95%) 1 94 2 3 066 3 98 163 4 3 141 251 5 100 520 093 Unexplored proteindiversity (Ultra)High-throughput screening Lab Chip 2009, 9: 1850 Anal. Chem. 2014, 86: 2526 Robotic mFluidic Reaction volume 100 mL 5 pL Reactions / day 50 000 1 . 108 Total time 5 years 3 days Total volume 5 000 L 150 mL No. of plates / devices 250 000 2.0 No. of tips 28 000 000 10 Enzyme specificity profiling m Fluidics Robotics Conventional Conventional Robotic mFluidic Reaction volume (mL) 10 1 0.00015 Total enzyme (mg) 540 54 0.5 Total time (days) 100 30 5 Anal. Chem. 2013, 85: 4761 Michal Vasina, CeCe Junior, Wednesday 10:15 Steady-state kinetics Concentration(mM) Tempertaure(°C) m Fluidic Conventional Conventional mFluidic Reaction volume (mL) 2 0.00010 Total enzyme (mg) 1 0.01 Throughput per hour 5 10 000 Small 2015, 11: 4009 6 Mechanism and thermodynamics Mixing Time (ms) Signal Time (s) E + S ES EI EP E + P Energy Stopped-flow mFluidic Dead time 0.3 ms 0.7 ms Reaction volume 100 mL 10 pL Temp. equilibration 10 min 50 ms Signal integration 0.5 ms no limit Multienzyme Systems H L D H H D E H H H D E H ChemBioChem 15: 1891 (2014) ACS Synth. Biol. 3: 172 (2014) E s c h e r i c h i a R h o d o c o c c u s A g r o b a c t e r i u m Multienzyme systems  1 n L d r o p l e t v o l u m e  1 0 0 0 0 a s s a y s / h o u r H L D H H D E H H H D E H r o b o t s c i e n t i s t Design and fabrication  soft lithography originates from semiconductor industry DESIGN / MODELING MASK / MOLD CASTING / BONDING 7 Design and fabrication  direct fabrication methods 3D PRINTING LASER CUTTING CNC m-MILLING Design and fabrication  m a t e r i a l s  i n e r t a n d t r a n s p a r e n t  P D M S - p o l y ( d i m e t h y l s i l o x a n e )  P M M A - p o l y ( m e t h y l m e t h a c r y l a t e )  f u s e d s i l i c a , q u a r t z a n d g l a s s  s u r f a c e m o d i f i c a t io n  p l a s m a t r e a t m e n t  s i l a n i z a t i o n  s o l – g e l c o a t i n g Sensing and detection  p ro c e s s i n g o f s m a l l re a g e n t v o l u m e s  a n a l y t i ca l t i m e s c a l e a n d p e r f o r m a n c e  o n c h i p d e t e c t i o n  f l u o r e s c e n c e ( L S M , F C S , F L I M )  U V/ V I S a b s o r b a n c e  I R s p e c t r o s c o p y  R a m a n s c a t t e r i n g  ( c h e m o / e l e c t r o ) l u m i n e s c e n c e  t h e r m a l c o n d u c t i v i t y  R I v a r i a t i o n  o f f c h i p d e t e c t i o n  G C , H P L C , M S  N M R , X - r a y Commercial Solutions  c u s t o m i z e d d e s i g n a n d f a b r i c a t i o n  e n t i r e t e c h n o l o g i e s Nature 499, 505 (2013)Nature Meth. 10, 1003 (2013) 8 Conclusions  r e d u c e d s a m p l e / r e a g e n t / p o w e r c o n s u m p t i o n  s u p e r i o r p e r f o r m a n ce a n d n o v e l p h y s i c s  a p p l i c a t i o n s i n l i f e a n d m e d i c a l s c i e n c e s  i n - h o u s e a s w e l l a s c o m m e r c i a l t e c h n o l o g i e s m ic r oflu id ic s r ev olu t ion iz e s c ien c e Reading  Yu m , K . , 2 0 1 4 : P h y s i o l o g i c a l l y re l e v a n t o rg a n s o n c h i p s . B i o t e c h n o l . J . 2 0 1 4 , 9 , 1 6 – 2 7  2 . K e y e l e m e n t s o f m i c r o e n v i r o n m e n t s ( p a g e 1 8 - 2 2 )