
C2110 UNIX operating system and programming basics 4th lesson -1-

C2110 UNIX and programming

Petr Kulhánek

kulhanek@chemi.muni.cz

National Centre for Biomolecular Research, Faculty of Science,
Masaryk University, Kamenice 5, CZ-62500 Brno

4th lesson

Processes

C2110 UNIX operating system and programming basics 4th lesson -2-

Contents

➢ Processes

• process, processor, multitasking, monitoring
• process execution, PATH variable

➢ Process communication with the environment

• standard input and output, error output, redirection, pipes,
commands

C2110 UNIX operating system and programming basics 4th lesson -3-

Processes

C2110 UNIX operating system and programming basics 4th lesson -4-

Computer scheme

north
bridge

south
bridgeUSB

mouse, keybord

RTC
real time clock

SATA controllers
hard drives

BIOS

graphic
system

memory

memory controller

peripherals with fast access
through PCI Express

network
(ethernet)

sound

PCI bus

CPU core

processor
number of CPU cores > 1
= SMP computer

The operating system provides run of
programs (processes) on processors and
optimal utilization of other resources
(memory, hard drive capacity). For
process management is used technology
called multitasking

C2110 UNIX operating system and programming basics 4th lesson -5-

Processes and multitasking

Process is in computer science a term for running instance of a computer program.
Process is located in RAM of computer in a form of a sequence of machine instructions,
which are executed by a processor. It contains not only the code of a running program, but
also dynamically changing data, that are handled by a process. One program can run
multiple times as processeses with different data (for example, a web browser displaying
different web pages). Management of processes is handled by operating system, that
ensures isolated run of the processes, OS alocates system resources and allows users to
manage processes (execution, termination, etc.).

Multitasking (used in a multiprocessing system) in computer science indicates ability of
operating system to perform several processes at the same time (at least seemingly).
Kernel of the operating system very quickly switches between running processes on a
processor or processors, so an user has impression that more processes run at the same
time.

adapted from wikipedia.org

C2110 UNIX operating system and programming basics 4th lesson -6-

SMP - Symmetric multiprocessing

memory

processor

Symmetric multiprocessing (SMP) is in computer science term for type of multi-processor
systems, where all processors are equivalent. Increasing number of processors, which
share the same memory, leads to improvement of computer performance, although not in
a linear manner, since some part of power is consumed on overhead (locking data
structures, processors control and their mutual communication).

CPU core

In the past, the processor speed had been improved by design changes which allowed to
increase CPU clock rate and thus to speed up execution of the program. This strategy reach
its limits (reliability, heat losses, ...) a few years ago. Thus the computational power was
improved by putting more CPU (cores) on the same chip (since 2005 for x86).
Therefore, today’s computers are multiprocessors systems.

CPU – Central Processing Unit

adapted from wikipedia.org

C2110 UNIX operating system and programming basics 4th lesson -7-

List of running processes

Commands for processes listing:

ps lists processes running in a given terminal or filtered by user specifications
(ps -u user_name)

Top continuously displays processes sorted by CPU load (termination by the q key)

$ ps

PID TTY TIME CMD

8763 pts/5 00:00:00 bash

8852 pts/5 00:00:00 gimp

8857 pts/5 00:00:00 ps

process ID
terminal where the process runs

consumed CPU time

name of running command

C2110 UNIX operating system and programming basics 4th lesson -8-

List of running processes - top
The top command monitors running processes in regular intervals. top is terminated by
the q (quit) key.

top - 13:05:58 up 16 days, 2:27, 2 users, load average: 2.95, 3.10, 3.03

Tasks: 150 total, 3 running, 147 sleeping, 0 stopped, 0 zombie

%Cpu(s): 0.3 us, 0.1 sy, 10.6 ni, 88.9 id, 0.1 wa, 0.0 hi, 0.0 si, 0.0 st

KiB Mem: 8138412 total, 8005624 used, 132788 free, 210168 buffers

KiB Swap: 4194300 total, 168 used, 4194132 free. 7239188 cached Mem

PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

3351 ivo 39 19 46784 29872 772 R 100.0 0.4 24:16.67 sc

30745 root 20 0 51732 1228 400 S 13.0 0.0 8:15.87 systemd-udevd

1 root 20 0 104664 4984 2736 S 6.5 0.1 6:36.74 init

383 root 20 0 19596 948 628 S 6.5 0.0 4:30.06 upstart-udev-br

2 root 20 0 0 0 0 S 0.0 0.0 0:00.70 kthreadd

process ID

owner of process

priority

Status: S - sleeping, R - running,
D - uninterruptible sleep (waiting for device)

memory usage of CPU and memory
consumed CPU time

program name

load of CPU in a fraction (1.0 = 100%)
in the last 1, 5, and 15 minutes

the system response may be slow,
if it a swap memory is used

C2110 UNIX operating system and programming basics 4th lesson -9-

Command and application run

1. First, path to a command is searched in a table with already used commands:
$ hash

hits command

1 /bin/rm

3 /bin/ls

2. If a command is not found, then a shell searchs a command file in directories listed in
the system variable PATH, where individual paths are separated by a colon.

$ echo $PATH

.../usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin

Path to command or application, if it exists, can be accessed by the type or whereis
commands:

$ type ls

/bin/ls

$ type pwd

pwd is a shell builtin

Order of directory search

Table can be deleted by:
$ hash -r

To run a command by a shell, the shell has to know a path to the file that contains binary
program or script.

pwd is implemented as a shell builtin

Command ls is saved in the file /bin/ls

C2110 UNIX operating system and programming basics 4th lesson -10-

Modification of PATH variable
Manual modification of PATH variable

$ export PATH=/my/path/to/my/commands:$PATH

Separator
The path to the directory with your commands,
which will be possible to execute without typing
a path.
Paths have to be always absolute!
(usage of relative paths is serious security risk)

The default value of the PATH variable
(needed to find a system commands)

Automatic modification of the PATH variable

Automatic modification of the variable PATH (and possibly other system variables) is
performed by the module command:

$ module add vmd

C2110 UNIX operating system and programming basics 4th lesson -11-

Commands and applications run...
User programs and scripts

$./muj_script

$ ~/bin/my_application

Running of applications in background

Redirection of program output

$ kwrite &> /dev/null

Name of program or script must be given
with the path (relative or absolute).

Redirection is specified at the end of the
command (after arguments)

$ gimp &> /dev/null &

ampersand is given at the end (after arguments
and redirection) of command

Terminal (useful shortcuts):

Ctrl + C it sends the SIGINT (interrupt) signal to running process

the process is usually terminated

Ctrl + D it closes an input stream of running process

Ctrl + Z suspends run of process, the fate of the process can be

controlled using commands bg, fg, disown

C2110 UNIX operating system and programming basics 4th lesson -12-

Exercise I
1. Print a table of already used commands (a list should be empty)

2. Run the ls command and again print the table with already used commands.

3. Where is a file that contains the program for the ls command? Use the type and
whereis commands. What is difference between these two commands?

4. What is the size and permissions of the file that contains the program ls.

5. Print the content of the PATH variable (echo $ PATH)

6. Is the nemesis program listed in the PATH directories?

7. Add the nemesis module.

8. List contents of the variable PATH again.

9. What is the path with the nemesis program?

10. What is the size and permissions of the file containing program nemesis?

11. Create a copy of the program ls into your home directory with name ‘my_ls’.

12. Run the program my_ls.

13. Remove permissions for execution from the my_ls file.

14. Try to run the my_ls program again. What will happen?

C2110 UNIX operating system and programming basics 4th lesson -13-

Process in environment

Process

Process is able to communicate with environment in various ways:
• GUI (Graphical User Interface = using the appropriate API)
• signals, shared memory, MPI (Message Passing Interface), etc.
• Standard streams

One of possibilities is to read input data from the standard input stream, print output data
to the standard output or error stream.

C2110 UNIX operating system and programming basics 4th lesson -14-

Standard streams

process
(command, program)standard input stream

(keyboard)

standard output stream
(the terminal screen)

the standard error stream
(the terminal screen)

Input-output streams of the process are used to communicate with the environment. Each
process opens three standard streams:

C2110 UNIX operating system and programming basics 4th lesson -15-

Redirection

Process
(command, program)standard input stream

(keyboard)

standard output stream
(the terminal screen)

standard error stream
(the terminal screen)

Input-output streams is possible to redirect to use files instead of keyboard or monitor.

C2110 UNIX operating system and programming basics 4th lesson -16-

Přesměrování vstupu
Redirection of standard input of program my_command from file input.txt.

$ my_command < input.txt

Redirection of standard input of my_command program from a script file

.......

./my_command << EOF

First line of text

Second line of text

Third line of text

EOF

......

sign indicating the end of input
(chosen by user)

end of input, sign can not be
surrounded by spaces

text loaded as input

This type of redirection is particularly advantageous to use in scripts, but it also works in command
line. The advantage is expansion of variables in the loaded text.

C2110 UNIX operating system and programming basics 4th lesson -17-

Redirection of output
Redirection of standard output of the program my_command to file output.txt.
(Output.txt file is created. If it exists, the original content is overwrited.)

$ my_command > output.txt

Redirection of standard output of the program my_command to file output.txt.
(Output.txt file is created. If it exists, the output of my_command is added in the end of
file.)

$ my_command >> output.txt

Similar rules apply for standard error output, in this case are used following operators

$ my_command 2> errors.txt

$ my_command 2>> errors.txt

C2110 UNIX operating system and programming basics 4th lesson -18-

Connection of standard streams
Standard output and standard error output of the program my_command is possible to
redirect at the same time to file output.txt.

$ my_command &> output.txt

$ my_command &>> output.txt

Alternative solutions for &>>: first it is necessary to redirect the standard output and then
connect standard error output with standard output.

$ my_command >> output.txt 2>&1

$ my_command 2>&1 >> output.txt do not work

order is important!

works in new versions of bash

C2110 UNIX operating system and programming basics 4th lesson -19-

Pipes
Pipes are used to connect the standard output of one process to the standard input of
different process.

process 1 process 2

input

output| input

output

error output

error output

$ command_1 | command_2

Usage:

C2110 UNIX operating system and programming basics 4th lesson -20-

Pipes and error stream
Transfer of standard error output by pipe is possible to do after its connection with
standard input.

process 1 process 2

input

output| input

output

error output error output

$ command_1 2>&1 | command_2

Usage:

2>&1

C2110 UNIX operating system and programming basics 4th lesson -21-

Commands to exercise

Showcase:

$ cat file1.txt file2.txt

$ paste file1.txt file2.txt

$ wc file.txt

$ head -15 file.txt

$ tail -6 file.txt

connects content of file1.txt and file2.txt sequentially, print the output on the screen

connects content of file1.txt and file2.txt in parallel, print the output on the screen

prints the number of lines, words and characters of the file file.txt

prints the first 15 lines of the file file.txt

prints the last 6 lines of the file file file.txt

cat merges the contents of multiple files into one (sequentially), or prints the content
of one file

paste merges the contents of multiple files into one (in parallel)

wc prints file information (number of lines, words and characters)

head prints first line(s) of file

tail prints last line(s) of file

C2110 UNIX operating system and programming basics 4th lesson -22-

Command for exercise ...
tr command is used to transform or delete characters from standard input. Result is given
to standard output.

Examples:

$ cat file.txt | tr --delete "qwe"

$ cat file.txt | tr --delete "[:space:]"

$ echo $PATH | tr ":" "\n"

from the content of file.txt removes characters "q", "w" and "e"

from the content of file.txt removes all whitespaces

In the text send by echo command will be replaced all
characters ":" by character for newline “\n"

C2110 UNIX operating system and programming basics 4th lesson -23-

Exercise II

1. Find all files with suffix .f90 in the directory
/home/kulhanek/Documents/C2110/Lesson03/, save the list of files into
~/Processes/list.txt

2. How many lines does the file list.txt contain?

3. Print first two lines from list.txt on the screen and then into the file two_lines.txt

4. Print only the third line of the file list.txt

5. In /proc directory, find all files that begin with the letters cpu. Remove information
about unauthorized access by redirection of error stream to /dev/null

6. Print directories contained in the PATH variable, each on a separate line.

7. Activate the vmd module. How will it change the content of the PATH variable?

C2110 UNIX operating system and programming basics 4th lesson -24-

Conclusion

C2110 UNIX operating system and programming basics 4th lesson -25-

Conclusion

➢Process is instance of running program. Operating system uses
multitasking to run multiple processes on multiple cores.

➢Program is a binary file directly executed by the processor.

➢ If program exists in any directory listed in the PATH variable, you
can specify program name without a path. Otherwise it is
necessary to include the path.

➢Each process can communicate using three streams. It is possible
to manipulate with these streams. It is possible to redirect
streams or connect them with each other.

C2110 UNIX operating system and programming basics 4th lesson -26-

Homework

➢ Exercise lessons 1 to 4

➢ Text editors

C2110 UNIX operating system and programming basics 4th lesson -27-

Text editors

➢ vi, vim, nano

➢ graphical text editors (kwrite, gedit, kate)

C2110 UNIX operating system and programming basics 4th lesson -28-

Text editors – installation

Try to use individual text editors on your installated Ubuntu 14.04 LTS. If they will not be
available, it is possible to install them as follows:

$ sudo apt-get install vim

$ sudo apt-get install kwrite

$ sudo apt-get install kate

$ sudo apt-get install gedit

$ sudo apt-get install nano

When you will be asked, enter the password for your account.

In default installation, it is installed vi editor in compatibility mode, which is useful to
replace by improved version (vim). Installation see above.

C2110 UNIX operating system and programming basics 4th lesson -29-

vi/vim, nano

vi/vim editor is a standard text editor for UNIX-like operating systems. It works only in text
mode, and its use is trivial.

• It is advisable to learn how to open a file, go into edit mode, edit text, save changes and

close the editor.

• Allows scripting (using variables, loops, arrays, associative arrays), eg . for creating

automatic texts of the loaded data.

• When in this room, you will run the vi command, it automatically starts program vim (Vi

IMporoved)

• Between the original vi and vim, it is a difference in handling.

Editor nano is the default text editor on some distributions (Ubuntu).

• less versatile than vim

• more direct control

C2110 UNIX operating system and programming basics 4th lesson -30-

vi – základy
Pracovní módy editoru

expended command mode command mode insertion mode

EscEnter

a, c, i, o, s, A, C, I, O, R, S:

File modification

i insertion of text to position of cursor

a insertion of text behind position of cursor

Launch of editor Turn off editoru

$ vi launchs of editor

$ vi filename launchs of editor and opens
file filename

:q turns off editor

:q! turns off editor without
saving of changes

:w saves file

:w filename saves file to filename

:wq turns off and saves file

More functionality: in file vi appendix

C2110 UNIX operating system and programming basics 4th lesson -31-

nano

More straight handling - menu at the bottom suggests possible action. To select events
use combination or individual characters

^letter - eg. ^X is same as Ctrl + X

M-letter - eg. M-M is same as the Alt + M

Launch of editor

$ nano launchs of editor

$ nano filename launchs of editor and opens file filename

C2110 UNIX operating system and programming basics 4th lesson -32-

kwrite

Expanded functionality: kate

C2110 UNIX operating system and programming basics 4th lesson -33-

gedit

C2110 UNIX operating system and programming basics 4th lesson -34-

Homework
1. Write ten lines long text in vi editor, with two or more words on each line. Save text

into file mydata.txt

2. Use command wc to verify, that the file is actually ten lines long.

3. Using the pipe(s), write a sequence of commands that prints on the screen only
number of words in the file mydata.txt

4. In a graphical editor of your choice, create a file containing ten words, each word on
a new line. Save text into file second_data.txt

5. Use paste command to create a file all_data.txt that will contain content of files
mydata.txt and second_data.txt in parallel.

6. Use wc command to verify that the file contains just ten lines.

7. Open all_data.txt file in a graphical text editor and visually verify the content of the
file

8. Try to work in different text editors and choose the one which fits you best.

