1 Coordination Chemistry Alfred Werner (1866-1919) NP in Chemistry 1913 [CoII(gly)3]- 1893 To central atom, more ligands can be bound then is its oxidation number 2 [Co(NH3)6]Cl3 [Co(NH3)5Cl]Cl2 [Co(NH3)4Cl2]Cl 3+ 2+ + Coordination Compounds Metal in oxidation state n+ (primary valence) Complex has coordination number m (secondary valence) Ligands bound to central atom by donor-acceptor bonds 3 n+/Central metal cation / neutral atom surrounded by a set of ligands. Each ligand provides 2 electrons to empty d-orbitals at metal and forms donor-acceptor bond. Number of ligands = Coordination number Central cation / metal atom Ligands Complex charge X+/- n Anion/cation (opposite charge) Coordination Compounds 4 Inner and Outer Coordination Sphere Inner Coordination Sphere = ligands driectly bound to the central atom Outer Coordination Sphere = ions asociated with a complex, not bound H2O H2O OH2 H2O H2O OH2 Mn2+ SO4 2Inner Coordination Sphere Outer Coordination Sphere H2O H2O OSO3 H2O H2O OH2 Mn2+ [Mn(OH2)6][SO4]: outer coordination of SO4 2[Mn(OH2)5(SO4)5]: Inner Coordination of SO4 2- counterion ligand 5 Coordination Compounds K2[PtCl6] 6 Energy Level Ordering Ar [Ne] 3s2 3p6 (4s0) K [Ar] 4s1 (3d0 4p0) Ca [Ar] 4s2 (3d0 4p0) Sc [Ar] 3d1 4s2 (4p0) Ti [Ar] 3d2 4s2 (4p0) 7 Stability of Half- / Filled d-Orbitals Cr [Ar] 3d5 4s1 (4p0) Cu [Ar] 3d10 4s1 (4p0) 8 Oxidation States of TMs 21,21,2 3,4 1,2,3 ,4 2,3, 4,5,6 1,2, 3,4, 5,6,7 1,2, 3,4, 5,6 1,2,3 4,5 2,3 4 3 ZnCuNiCoFeMnCrVTiSc 9 d-Electron Count Number of electrons in valence level Cr [Ar] 3d5 4s1 (4p0) Number of electrons removed during cationt formation: electrons of s-orbital are removed first Cr3+ Number of electrons remaining in d- orbitals Cr3+ [Ar] 3d3 4s0 (4p0) Cr3+ is a d3 cation 10 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 OO -O Oox = OO -O Oox = NH2 en = H2N NH2 en = H2N Complex Ox.No. (Ligand) Ox.No. (M) No. d-electrons [Cr2O7]2- -2 +6 d0 [MnO4]- -2 +7 d0 [Ag(NH3)2]+ 0 +1 d10 [Ti(H2O)6]3+ 0 +3 d1 [Co(en)3]3+ 0 +3 d6 [PtCl2(NH3)2] -1, 0 +2 d8 [V(CN)6]4- -1 +2 d3 [Fe(ox)3]3- -2 +3 d5 11 Donor-Acceptor Bond Acceptor Empty orbital Donor Free e pair donor-acceptor bond is equivalent to a covalent bond Covalent Bond 12 H NH H F BF F+ H NH H F BF F H NH H F BF F Donor-Acceptor Bond NH3 BF3 H3N _> BF3 Donor-Acceptor Bond + VB theory 13 Donor-Acceptor Bond F F F H H H H H H F F F H H H F F F NH3 BF3 H3N _> BF3 + B N VB theory MO theory 14 [Co(NH3)6]3+ H N H H Co3+ + H3N NH3 NH3 NH3 H3N NH3 3+ 6 "Lewis Acid" "Lewis Base" Donor-Acceptor Bond Each ligand provides 2 electrons VB theory 15 Pt2+ [Xe] 4f14 5d8 4s0 PtCl4 2dsp2 hybrid orbitals Electrons from Cl-, square planar Ni2+ [Ar] 3d84s0 NiCl4 2sp3 hybrid orbitals Electrons from Cl-, tetrahedral d s p d s p 16 Co3+ [Ar] 3d64s0 CoF6 3sp3d2 hybrid orbitals Electrons from F-, octahedral Co3+ [Ar] 3d64s0 Co(NH3)6 3+ d2sp3 hybrid orbitals Electrons from NH3, octahedral L L L L L L d d s p s p 17 Monodentate Ligands NH3 ammonia H2O water SR2 thioether PPh3 phosphane P CO Carbon dioxide C O Cr Ni(CO)4, Fe(CO)5, Mo(CO)6 18 HSAB = Hard and Soft Acids and Bases R. Pearson 1963 High oxidation states of central atoms are stabilised by F−, O2− Low oxidation states are stabilised by CO, CN− Base Acid Hard Soft 19 NH3, F-, H2O, OH-, CO3 2Small donor atoms High electronegativity Difficult to polarize Fe(III), Mg(II), Cr(III), Al(III) Small atoms (1st trans. row) Large charge HARD donor atoms CO, PPh3, I-, C2H4, SRH, CN-, SCNLarge donor atoms Low electronegativity Easily polarized Ag(I), Cu(I), Hg(II), Au(I) Large atoms (2nd and 3rd transition row) Small charge SOFT donor atoms Hard metals Soft metals Stabile complexes Stabile complexes Weak complexes HSAB 20 H2N NH2 1,2-diaminoethane = ethylendiamine = en [PtCl2(en)] Five-membered chelate cycle square planar complex Ph2P PPh2 1,2-difenylphosphinoethane dppe 2,2'-bipyridine bipy N N N N 1,10-phenanthroline phen Neutral Bidentate Ligands 21 acetate = ac- O O - OO H3C O O oxalate = ox2complex Pd(II)-oxim π-donor bidentate ligand Fe C C C O O O [Fe(CO)3(h4-C4H6)] R O O N R1 RO O N R1 H H Pd Anionic Bidentate Ligands 22 H2N NH NH2 2,2':6',2"-terpyridine tpy diethylentriamine dien N H NHHN1,2,4-triazacyclononane Macrocyclic ligand N N N Tridentate Ligands 23 N HNN NH N N N N N HNN NH porfyrine ftalocyanine NH2 NH2 N NH2 tris(2-aminoethyl)amine tren Tetradentate Ligands 24 N N O - O -- O - O O OO O tetraanion of ethylendiamintetraacetic acid EDTA Hexadentate O N NO O O M O O O O Multidentate Ligands 25 Nomenclature of Coordination Complexes H2O-Aqua NH3-Ammine CO-Carbonyl NO-Nitrosyl CH3NH2-Methylamine C5H5N-Pyridine F--Fluoro Cl--Chloro Br--Bromo I--Iodo O2--Oxo OH--Hydroxo CN--Cyano SO4 2--Sulfato S2O3 2--Thiosulfato NO2 --Nitrito-N- ONO--Nitrito-O- SCN--Thiocyanato-S- NCS--Thiocyanato-N- 26 Stability of Complexes Stability constant of a complex = equilibrium constant of its formation High value of K = stabile complex 27 Stability of Complexes Stability constant of a complex MLn 28 Stability of Complexes Total stability constant of a complex MLn 29 Chelate Effect [Ni(H2O)6]2+ + 6 NH3 [Ni(NH3)6]2+ + 6 H2O [Ni(H2O)6]2+ + 3 en [Ni(en)3]2+ + 6 H2O logK = 8.61 logK = 18.28 ΔG = - RT lnK = ΔH - TΔS ΔH same for both reactions (Ni-O → Ni-N) ΔS high for chelate, more product particles 30 Chelates, Macrocycles, Cryptates NP in Chemistry 1987 Donald J. Cram Jean-Marie Lehn Charles J. Pedersen 31 Chelates, Macrocycles, Cryptates O O N N HOOC COOH COOH COOH O Co N ON O O O O EDTA tetraanion of ethylendiamintetraacetic acid Chelatation therapy of Pb poisoning Chelatometry Dissolves CaCO3 32 Chelates, Macrocycles, Cryptates N N N N R7 R8 R1 R2 R3 R4R5 R6 M R9 R10 R11 R12 Metalloporphyrins: M = Fe (hem, cytochrom c), Mg (chlorophyl), Co (B12) 33 Hemoglobine 34 6CO2 + 6H2O → C6H12O6 + 6O2 Mg chlorophyl 35 Chelates, Macrocycles, Cryptates Valinomycine 36 L M L LL L L L M L L L Octahedral complexes Oh Tetrahedral complexs Td Geometry of Complexes 37 Tetrahedral 109o 28' C.N. 4 Square planar 90o C.N. 4 Trigonal bipyramidal 120o + 90o C.N. 5 Square pyramidal 90o C.N. 5 Octahedral 90o C.N. 6 Geometry of Complexes 38 Isomers of Complexes Structural isomers Bonding Coordination Ionization Stereo isomers Geometric Optical 39 Bonding : SCN-, NO2 -, OCN- NH3 Co NH3 H3N NH3 NH3N O O 2+ NH3 Co NH3 H3N NH3 OH3N N 2+ O nitro- nitritoStructural Isomers 40 Structural Isomers Coordination [Pt(NH3)4][CuCl4] [Cu(NH3)4][PtCl4] Ionization [Co(NH3)5SO4]Br [Co(NH3)5Br]SO4 41 Stereo Isomers Geometric: cis-trans, diastereomers 42 Stereo Isomers cis trans Pt H3N Cl ClH3N Pt H3N NH3 ClCl Geometric: cis-trans diastereomers 43 Antitumor Medicine H3N Pt H3N Cl Cl Cisplatin H3N Pt H3N O O O O Carboplatin H3N Pt H3N O O O O Nedaplatin H2 N Pt N H2 O O O O Oxaliplatin Inactive H2 N Pt NH Cl NH2 H3N Pt Cl Cl NH3 44 Stereo Isomers H N N N OH2N N O H HH HH O PO O- O O NH N N O NH2 N O H HH HH O PO O- O Pt H3N NH3 DNA Cisplatin = cancerostatics 45 Geometric: mer-fac, diastereomers Stereo Isomers A A BM B B A A A BM A B B S L S M L S L N N N M L L L mer fac mer fac 46 Stereo Isomers Optical: enantiomers 47 Stereo Isomers Optical: enantiomers No Sn S1 = symmetry plane S2 = inversion center [Co(en)3]3+ 48 Optical Rotation 49 Bonding in Complexes 1) VB 2) CFT = Crystal Field Theory 1929 Hans Bethe Electrostatic interactions between ligands and metal 3) LFT = Ligand Field Theory 1935 modification J. H. Van Vleck covalence 4) MO 50 Ligand Field Theory Octahedral complex Central atom in the center of octahedron Ligands as negative point charges x z y 51 d-Orbitals in Octahedral Ligand Field 52 Splitting of d-Levels in Oh Field eg t2g Stabilization 0.4 Δo Destabilization 0.6 Δo 5 degenerate d-orbitals in isolated cation 53 CFSE = Crystal Field Stabilization Energy Δo Δo Weak field Δo < P (pairing energy) High spin complexes Strong field Δo > P (pairing energy) Low spin complexes 54 Crystal Field Stabilization Energy Weak field Strong field Δo increases 55 CFSEeCFSEe 1.2 Δo2t2g 6 eg 2 1.2 Δo2t2g 6 eg 2d8 1.8 Δo1t2g 6 eg 1 0.8 Δo3t2g 5 eg 2d7 2.4 Δo0t2g 6 0.4 Δo4t2g 4 eg 2d6 2.0 Δo1t2g 5 0.0 Δo5t2g 3 eg 2d5 1.6 Δo2t2g 4 0.6 Δo4t2g 3 eg 1d4 1.2 Δo3t2g 3 1.2 Δo3t2g 3d3 0.8 Δo2t2g 2 0.8 Δo2t2g 2d2 0.4 Δo1t2g 1 0.4 Δo1t2g 1d1 CFSE = (n t2g ) 0.4 Δo − (n eg) 0.6 Δo e = number of unpaired electrons Weak field Strong field 56 Splitting of d-Levels in Oh Field t2g eg 3/5Δo 2/5Δo 10Dq [Ti(H2O)6]3+ d1 t2g 1eg 0 t2geg 1 pink 243 kJ mol−1 (Δo) 57 UV-vis Absorption Spectrum of [Ti(H2O)6]3+ 58 Electronic Transitions Energy increases This energy is just sufficient to excite electron Electronic Transition 59 60 Splitting of d-Levels in Td Field e t2 2/5Δt 3/5Δt Δt = 4/9 Δo Td complexes are always high spin No d-orbital points directly to ligands = weaker interaction 61 d-Orbitals in Tetrahedral Ligand Field 62 Splitting of d-Levels in Square Planar Field (d8) t2g eg xz, yz xy z2 x2- y2 x2- y2 z2 xy xz, yz eg a1g b2g b1g Removing ligands in z direction Ni(CN)4 2, PdCl4 2- , Pt(NH3)4 2+ , PtCl4 2- , AuCl4 - d8 63 18-electron Rule Cr(CO)6 Cr d6 6 × CO 6 × 2 = 12 Sum 18 [Co(NH3)3Cl3] Co d9 3 × NH3 3 × 2 = 6 3 × Cl 3 × 1 = 3 Sum 18 Number of d-electrons of neutral metal + 2 e neutral ligands + 1 e anionic ligands Sum 18 for stabile complexes 64 Properties of Complexes Ligand field splitting t2g eg 65 Spectrochemical Series: Central atom: 3d < 4d < 5d 2+ < 3+ < 4+ Ligand Field Splitting Factors Bond length and strength M-L Type of coordination 4/9 ΔO = Δt Mn2+ < Ni2+ < Co2+ < Fe2+ < V2+ < Fe3+ < Co3+ < Mn3+ < Mo3+ < Rh3+ < Ru3+ < Pd4+ < Ir3+ < Pt4+ I- < Br- < S2- < SCN- < Cl- < N3 -, F-< OH- < ox, O2- < H2O < NCS- < py, NH3 < en < bpy, phen < NO2 - < CH3 -, C6H5 - < CN- < CO 66 67 Bonding in Complexes by MO SALCAO Orbitals of ligands 5x (n−1) d 1x ns 3 x np Orbitals of metal 68 x y z Metal Valence Orbitals s px py pz dxy dxz dyz dx2-y2 dz2 69 a1g t1u eg M-L Sigma bonds 3 x np 70 t2g Nonbonding d-Orbitals There is no suitable combination of AOs of ligands (for sigma bonding) 71 72 t1u a1g eg, t2g t1u * a1g * eg * t2g eg t1u a1g a1g, eg, t1u (n+1)p (n+1)s nd M ML6 6L Δo 73 t2 a1 e, t2 t2 * a1 * e t2 a1 a1, t2 (n+1)p (n+1)s nd M ML4 4L(LGOs) t2 * Δt 74 a2u, eu a1g eg, a1g, b1g, b2g eu * a2u a1g b2g, eg eu b1g a1g a1g, eg, t1u (n+1)p (n+1)s nd M ML4 (D4h) 4L(LGOs) Δ b1g * a1g * 75 C O H H pπ-dπ RO , RS , O 2, F , Cl , Br , I , R2N dπ-dπ R3P, R3As, R3S dπ-π* CO, RNC, pyridine, CN , N2, NO2 , ethylene dπ-σ* H2, R3P, alkanes MO in π-Bonding 76 Pi base Pi acid 77 Ligands with pi Orbitals Pi base Pi acid 78 Back pi donation M → CO Sigma donation M ← CO 79 Kinetics 10 10 10 10 10 10 10 10 10 10 10 -10 -8 -6 -4 -2 0 2 4 6 8 10 10 10 10 10 10 10 10 10 10 10 10 10 8 6 4 2 0 -2 -4 -6 -8 -10 Ir Rh Pt At Fe Ga V Be Mg Pd Ti Ni Fe Mn Zn Cd Hg Cr Cu Gd Tb DyHoEr Tm Yb In Ca Sr Ba Na K Rb Cs Ru Ru 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+ 3+3+ 3+ 3+3+ 3+ 3+ 3+ 2+ 2+ 2+2+ Li+ + + + + 2+ 2+ 2+ 2+ 2+ 2+ 2+ 2+2+ 2+ 2+ 2+ 3+ Cr V2+ 2+ Co Metalion k (s )–1 H O2 τ (s)H O2 [M(H2O)n]x+ + H2O* [M(H2O*)(H2O)n-1]x+ + H2O INERT LABILE 80 Mechanisms of Complex Reactions Mechanism Dissociative (D) W(CO)6 W(CO)5 + CO W(CO)5 + PPh3 W(CO)5(PPh3) Associative (A) [Ni(CN)4]2- + 14CN- [Ni(CN)4(14CN) ]3[Ni(CN)4(14CN) ]3- [Ni(CN)3(14CN) ]2- + CN- 81