CG920 Genomics

Lesson 6

Protein Interactions in Gene Regulations

Jan Hejátko

Functional Genomics and Proteomics of Plants,

Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno <u>hejatko@sci.muni.cz</u>, <u>www.ceitec.muni.cz</u>

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Literature

- Literature sources for Chapter 06:
 - Wilt, F.H., and Hake, S. (2004). Principles of Developmental Biology. (New York ; London: W. W. Norton).
 - Ainger, K., Avossa, D., Morgan, F., Hill, S.J., Barry, C., Barbarese, E., and Carson, J.H. (1993). Transport and localization of exogenous myelin basic protein mRNA microinjected into oligodendrocytes. J Cell Biol 123, 431-441.
 - Alberts, B. (1998). The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92, 291-294.
 - Grefen, C., Stadele, K., Ruzicka, K., Obrdlik, P., Harter, K., and Horak, J. (2008). Subcellular localization and in vivo interactions of the Arabidopsis thaliana ethylene receptor family members. Molecular Plant 1, 308-320.
 - Hu, C.D., and Kerppola, T.K. (2003). Simultaneous visualization of multiple protein interactions in living cells using multicolor fluorescence complementation analysis. Nat. Biotechnol. 21, 539-545.
 - Shahbabian, K., and Chartrand, P. (2012). Control of cytoplasmic mRNA localization. Cellular and molecular life sciences : CMLS 69, 535-552.
 - Van Leene, J., Witters, E., Inze, D., and De Jaeger, G. (2008). Boosting tandem affinity purification of plant protein complexes. Trends Plant Sci 13, 517-520.

Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J 40, 428-438.

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions *in vivo*
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)
 - Membrane Recruitment Assay (MeRA)

 Practical use of methods for *in vivo* studies of protein interactions

Importance of Protein Interactions

- Functional importance of specific protein interactions
 - Most of the proteins in the cell exist in the form of complexes which may further interact with each other
 - Proteasome
 - protein complex responsible for the degradation of obsolete proteins in the cell

Importance of Protein Interactions

- Functional importance of specific protein interactions
 - Chromatin structure

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

DNA methylation in animals vs. in plants

Importance of Protein Interactions

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription

1i6h RNA Polymerase

1lbh+1efa lac Repressor

> **1ais** TATA-binding Protein/ Transcription Factor IIB

Initiation of Transcription

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Multifactorial Promoters Control

ProENDO16:REPORTER (sea urchin)

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Multifactorial Promoters Control

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Importance of Protein Interactions

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization

mRNA localization

- Importance of mRNA localization
 - Control over spatiotemporal localization of gene product (protein)
 - Asymmetric cell division during development
 - Embryo polarization

Shahbabian and Chartrand, 2012

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

mRNA localization

- **Role of mRNA localization**
 - Attenuating the expression of potentially toxic proteins
 - Localization of expression of MBP into myelination regions of nerve cells

OP Vzděláván

Ainger et al., 1993

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

mRNA localization Mechanisms

Diffusion and recruitment of mRNA

- During the early stages of Xenopus oogenesis, Xcat-2 mRNA is restricted to a specific structure in the cytoplasm called the mitochondrial cloud (MC, Balbiani body)
- MC movement is partly dependent on the depolymerization of microtubuls (socalled "molecular motor")
- Recruitment on the vegetal pole via interaction of MC and ER

Xcat2 mRNA

) mitochondrial cloud

Shahbabian and Chartrand, 2012

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

mRNA localization

Mechanisms

Localized mRNA degradation

- During embryogenesis in Drosophila m. Hsp83 mRNA is localized at the posterior pole of embryo, similarly to NANOS mRNA
- Hsp83 mRNA is localized in the whole embryo, however, it is destabilized by cis elements both in 3'UTR (HDE) and in coding region (HIE).

- HIE elements are recognized by SMAUG protein, which mediates binding of degradation complex CCR4/POP2/NOT
- In the posterior pole the Hsp83 mRNA is protected from the effects of SMAUG by the so-called HPE element in 3'UTR; mechanism of this protection has been still unknown

STERSTVO ŠKOLSTVI, ADEŽE a TELOVÝCHOVY IVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

mRNA localization Mechanisms

Active transport of mRNA

- ASH1 is represor of the HO endonuclease in S. cereviseae; inhibition of HO results in inhibition of mating-type switching in daughter cells
- ASH1 mRNA is actively transported by "molecular motors" associated with actin

Shahbabian and Chartrand, 2012

- ASH1 mRNA contains 4 cis elements (3 in the coding sequence and 1 in the 3'UTR), which are recognized by RNA-binding protein SHE2
- SHE2 interacts with SHE3, an adaptor protein, which links SHE2 to the molecular motor MYO4, which then binds to actin and allows transport of ASH1 mRNA into the daughter cell

Importance of Protein Interactions

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - hnRNA splicing

Importance of Protein Interactions

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - hnRNA splicing
 - Protein stability

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Auxin Signalling

Jing and Strader, Plant Structural Biology, Hormonal Regulations (2018)

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Importance of Protein Interactions

- Functional importance of specific protein interactions
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - hnRNA splicing
 - Protein stability
 - Signal transduction

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Signal transduction

- PI and signal transduction
 - through G protein and phospholipase C
 - Signalling cascades using cAMP

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation

INVESTICE DO ROZVOJE VZDĚLÁVÁN

PI *in vivo* Co-immunoprecipitation

 Isolation of protein complexes using antibodies recognizing one of the interacting proteins

αHA

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Pl *in vivo* Tandem affinity purification (TAP-tag)

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)

INVESTICE DO ROZVOJE VZDĚLÁVÁN

PI in vivo

Yeast two-hybrid assay (Y2H)

- Isolation of protein complexes using recombinant proteins, each fused to a part of Gal4 transcription factor
 - One of the proteins (bait) fused to DNAbinding domain of Gal4 (Gal4-BD)
 - The other protein (prey) fused to activation domain of Gal4 (Gal4-AD)
 - Protein interactions enable reconstitution of binding domains with activation domain and triggers the expression of a reporter gene
 - Visual detection (blue color, LacZ)
 - Auxotrophic selection (growth on medium lacking histidine, His)
 - Method used for searching for interaction partners in expression libraries of individual organisms

A. Regular transcription of the reporter gene

B. One fusion protein only (Gal4-BD + Bait) - no transcription

C. One fusion protein only (Gal4-AD + Prey) - no transcription

D. Two fusion proteins with interacting Bait and Prey

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)

Pl in vivo Bimolecular fluorescence complementation (BiFC)

- Protein interaction is detected by reassociation of the fluorescent protein
 - Each of the potential interaction partners is fused to one of the subunits of the fluorescent protein, e.g. YFP
 - In case of interaction, the fluorescence appears
- Apart from identification of the interaction, this method allows you to localize the interaction within the cell

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)
 - Membrane Recruitment Assay (MeRA)

NVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

PI in vivo

Membrane Recruitment Assay (MeRA)

 Method for identification of interactions of cytoplasmic proteins with the membrane proteins

EVROPSKÁ UNIE

Membrane protein is fused with a fluorescecnt protein

Potential interaction partner is fused with another fluorescent protein with different emission spectra

In case of interaction the localization of the cytoplasmic protein is changed – it is colocalized on the membrane with the membrane protein

Evropským sociálním fondem a státním rozpočtem České republiky

Pl in vivo Membrane Recruitment Assay (MeRA)

VZDĚLÁVÁNÍ

ie spolufinancována m sociálním fondem

Outline

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)

- Membrane Recruitment Assay (MeRA) INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
- Practical use of methods for *in vivo* studies of protein interactions

Signal Transduction via MSP

Recent Model of the CK Signaling via Multistep Phosphorelay (MSP) Pathway

Is there any specificity in plant MSP?

OP Vzděláváni

pro konkurenceschopnost

NIS

EVROPSKÁ UNIE

Specificity of CKI1 signalling

Specificity of CKI1 Signalling

Specificity of CKI1 interaction was confirmed in vitro

Structure of CKI1_{RD}

Dynamics of CKI1_{RD}

pro konkurenceschopnost

EVROPSKÁ UNI

MLÁDEŽE A TĚLOV

Tato prezentace je spolufinancována

Evropským sociálním fondem a státním rozpočtem České republiky

CKI1_{RD} structural changes are associated with its binding specificity

Model Suggestion

Summary

- Functional importance of the specificic interactions of proteins in the regulation of gene expression
 - Chromatin structure
 - Regulation of transcription
 - mRNA localization
 - mRNA stability
 - Protein stability
 - Signal transduction
- Methods of analysis of protein interactions in vivo
 - Co-immunoprecipitation
 - The tandem affinity purification (TAP-tag)
 - Yeast two-hybrid assay (Y2H)
 - Bimolecular fluorescence complementation (BiFC)
 - Membrane Recruitment Assay (MeRA) INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
 - Practical use of methods for *in vivo* studies of protein interactions

Discussion

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ