CG920 Genomics

Lesson 12

Systems Biology Tools

Model organisms, PCR and PCR Primer Design

Jan Hejátko

Functional Genomics and Proteomics of Plants,

Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Brno <u>hejatko@sci.muni.cz</u>, <u>www.ceitec.muni.cz</u>

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

Literature

• Literature sources for Chapter 12:

- Wilt, F.H., and Hake, S. (2004). Principles of Developmental Biology. (New York ; London: W. W. Norton)
- Roscoe B. Jackson Memorial Laboratory., and Green, E.L. (1966). Biology of the laboratory mouse. (New York: Blakiston Division) <u>http://www.informatics.jax.org/greenbook/index.shtml</u>
- Eden, E., Navon, R., Steinfeld, I., Lipson, D., and Yakhini, Z. (2009). GOrilla: a tool for discovery and visualization of enriched GO terms in ranked gene lists. BMC Bioinformatics 10, 48.
- The Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796-815.
- Gregory, S.G., Sekhon, M., Schein, J., Zhao, S., Osoegawa, K., Scott, C.E., Evans, R.S., Burridge, P.W., Cox, T.V., Fox, C.A., Hutton, R.D., Mullenger, I.R., Phillips, K.J., Smith, J., Stalker, J., Threadgold, G.J., Birney, E., Wylie, K., Chinwalla, A., Wallis, J., Hillier, L., Carter, J., Gaige, T., Jaeger, S., Kremitzki, C., Layman, D., Maas, J., McGrane, R., Mead, K., Walker, R., Jones, S., Smith, M., Asano, J., Bosdet, I., Chan, S., Chittaranjan, S., Chiu, R., Fjell, C., Fuhrmann, D., Girn, N., Gray, C., Guin, R., Hsiao, L., Krzywinski, M., Kutsche, R., Lee, S.S., Mathewson, C., McLeavy, C., Messervier, S., Ness, S., Pandoh, P., Prabhu, A.L., Saeedi, P., Smailus, D., Spence, L., Stott, J., Taylor, S., Terpstra, W., Tsai, M., Vardy, J., Wye, N., Yang, G., Shatsman, S., Ayodeji, B., Geer, K., Tsegaye, G., Shvartsbeyn, A., Gebregeorgis, E., Krol, M., Russell, D., Overton, L., Malek, J.A., Holmes, M., Heaney, M., Shetty, J., Feldblyum, T., Nierman, W.C., Catanese, J.J., Hubbard, T., Waterston, R.H., Rogers, J., de Jong, P.J., Fraser, C.M., Marra, M., McPherson, J.D., and Bentley, D.R. (2002). A physical map of the mouse genome. Nature 418, 743-750.

Benitez, M. and Hejatko, J. Dynamics of cell-fate determination and patterning in the vascular bundles of Arabidopsis thaliana (submitted)

Outline

Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling
- Model organisms
 - Mus musculus
 - Arabidopsis thaliana

Selected methods of molecular biology

- Preparation of transgenic organisms
- PCR
- Design and preparation of primers (Dr. Hana Konečná)

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

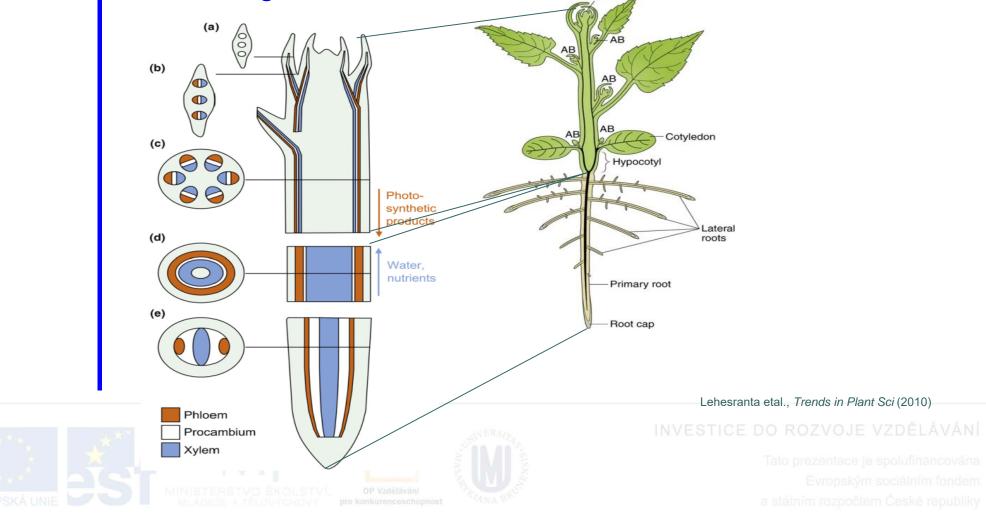
Outline

Tools of systems biology

Gene ontology analysis

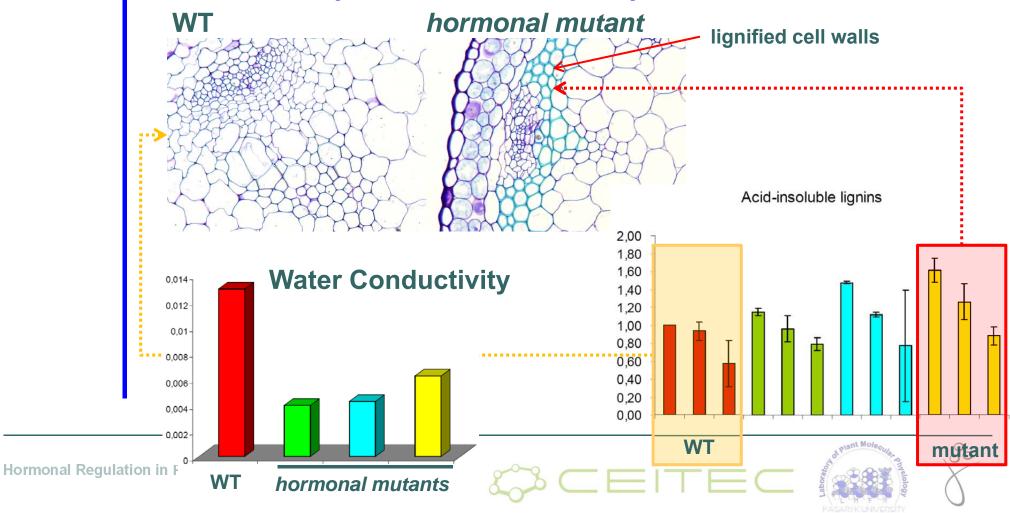
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

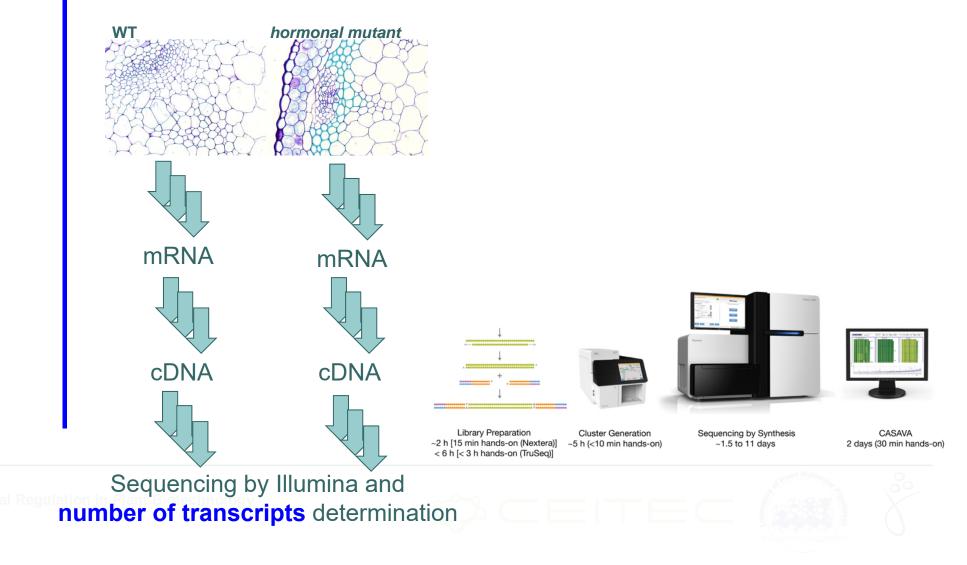

Results of –omics Studies vs Biologically Relevant Conclusions

Results of -omics studies represent huge amount of data, e.g. genes with differential expression. But how to get any biologically relevant conclusions out of it?

Ddii et al., *unpublished*


gene	locus	sample_1	sample_2	status va	alue_1	value_2	log2(fold_change)	test_stat	p_value	q_value	
								1.79769e+		0,0003918	
AT1G07795	1:2414285-2414967	WT	MT	OK	0	1,1804	1.79769e+308	308	6.88885e-05		1 yes
								1.79769e+		4.67708e-	
HRS1	1:4556891-4558708	WT	MT	OK	0	0,696583	1.79769e+308	308	6.61994e-06		yes
	1 0007 170 000000	14/T		01/	0	0 54 4000	4 70700 .000	1.79769e+	0 74040 05	0,0005350	
ATMLO14	1:9227472-9232296	VVI	MT	OK	0	0,514609	1.79769e+308	308	9.74219e-05		5 yes
	1.0400000 0400700	\A/T	MT		0	0.077005	4 70700- 1000	1.79769e+	2 2002 - 00	3.50131e-	
NRT1.6	1:9400663-9403789	VVI	МТ	OK	0	0,877865	1.79769e+308	308 1.79769e+	3.2692e-08	07	yes
AT1G27570	1:9575425-9582376	\A/T	мт	ок	0	2 0920	1.79769e+308	308	9.76039e-06	6 6 4 7 0 0 5	1/00
ATTG27570	1:22159735-	VVI		UN	0	2,0629	1.797090+300	1.79769e+	9.760396-00	9.84992e-	yes
AT1G60095		wт	МТ	ок	0	0 688588	1.79769e+308		9.95901e-08		yes
A11600095	22102419	VVI		UK	0	0,000500	1.797096+300	1.79769e+	9.939016-00	507	yes
AT1G03020	1:698206-698515	wт	МТ	ок	0	1 78850	1.79769e+308	308	0,00913915	0 027795	Rves
111000020	1.000200-000010			UN	0	1,70009		1.79769e+	0,00010010	0,021100	,00
AT1G13609	1:4662720-4663471	WТ	МТ	ОК	0	3 55814	1.79769e+308	308	0,00021683	3 0 0010807	9 ves
						0,00011		1.79769e+	0,0002.000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,,
AT1G21550	1:7553100-7553876	WT	МТ	OK	0	0.562868	1.79769e+308	308	0,00115582	2 0.0047149	7 ves
						-,		1.79769e+	-,	1.91089e-	<i>´</i>
AT1G22120	1:7806308-7809632	WT	MT	OK	0	0,617354	1.79769e+308	308	2.48392e-06		yes
	1:11238297-							1.79769e+		0,0002851	
AT1G31370	11239363	WT	MT	OK	0	1,46254	1.79769e+308	308	4.83523e-05	; ;	3 yes
	1:13253397-							1.79769e+		5.46603e-	
APUM10	13255570	WT	MT	OK	0	0,581031	1.79769e+308	308	7.87855e-06	05	yes
	1:18010728-							1.79769e+		0,0003747	3
AT1G48700	18012871	WT	MT	OK	0	0,556525	1.79769e+308	308	6.53917e-05	5 (6 yes
	1:21746209-							1.79769e+			
AT1G59077	21833195	WT	MT	OK	0	138,886	1.79769e+308	308	0,00122789	0,0049681	6 yes
	1:22121549-							1.79769e+			
AT1G60050	22123702	WT	MT	OK	0	0,370087	1.79769e+308	308	0,00117953	0,004800	1 yes
474045040			MT		00000740	47.0050	40.0000	4 40500	4 05070 05	7 40000	-
AT4G15242		WT	MT	OK 0),00930712	17,9056	10,9098	-4,40523	31.05673e-05	7.13983e-0	5 yes
ATE 022054	5:12499071-		MT		0.0400075	50.0007	40.0040	0.0110			0
AT5G33251		WT			0,0498375	- ,	10,0349	-9,8119			0 yes
AT4G12520	4:7421055-7421738	VVI	MT	OK	0,0195111	15,8516	9,66612	-3,90043	9.60217e-05	0,0005289	J4 yes
AT1G60020	1:22100651- 22105276	WT	МТ	ок	0.0118377	7.18823	9.24611	7 50200	C 10504a 14	1 4000 - 10	
					-)	,		,	26.19504e-14		,
AT5G15360	5:4987235-4989182	VVI	MT	OK	0,0988273	56,4834	9,1587	-10,4392	2 ()	0 yes

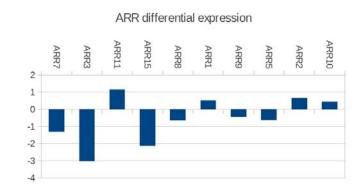
Vascular tissue as a developmental model for GO analysis and MRN modeling


Hormonal Control Over Vascular Tissue Development

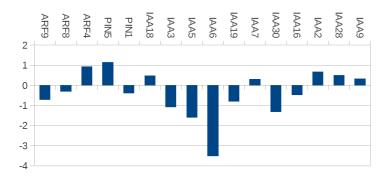
Plant Hormones Regulate Lignin Deposition in Plant Cell Walls and Xylem Water Conductivity

Hormonal Control Over Vascular Tissue Development

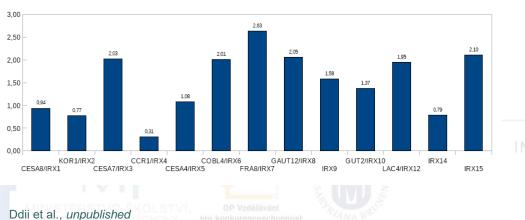
Transcriptional profiling via RNA sequencing

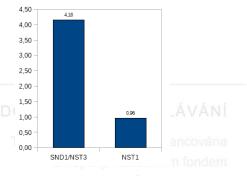

Results of –omics Studies vs Biologically Relevant Conclusions

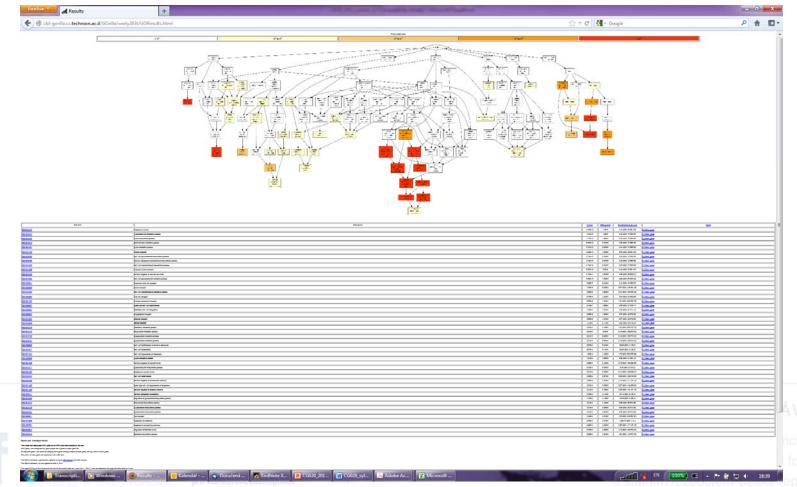

Transcriptional profiling yielded more then 7K differentially regulated genes...


Ddii et al., *unpublished*

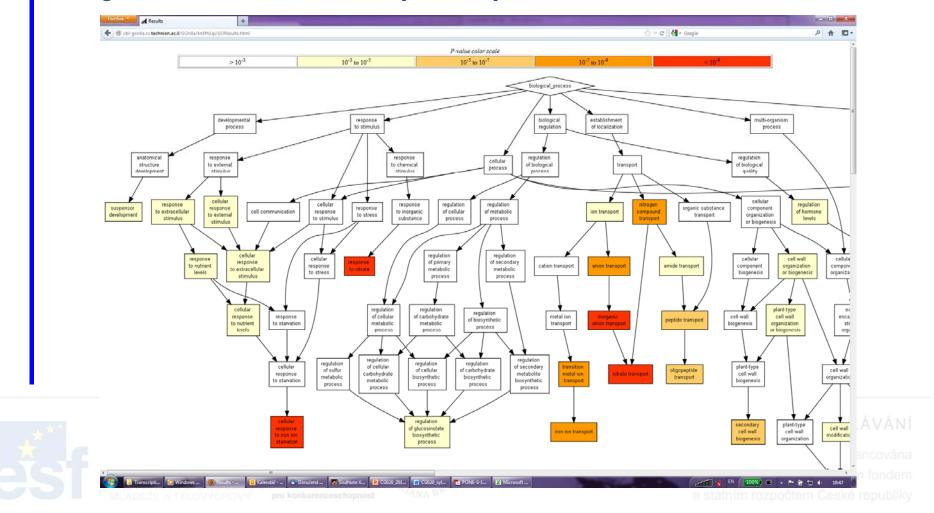
gene	locus	sample_1	sample_2	status v	/alue_1	value_2	log2(fold_change)		p_value	q_value	
AT4 007705	4 044 4005 044 4005	NA/T					4 70700	1.79769e+	0 00005 05	0,00039180	
AT1G07795	1:2414285-2414967	VVI	МТ	OK		0 1,1804	1.79769e+308	308	6.88885e-05		lyes
	1:4556891-4558708	M/T	MT	ov			4 70700- 1000	1.79769e+	0.0100100	4.67708e-	
HRS1	1:4556891-4558708	VVI	МТ	ок		0 0,696583	1.79769e+308	308	6.61994e-06		yes
ATMLO14	1:9227472-9232296	\//T	мт	ок		0 0 514600	1.79769e+308	1.79769e+ 308	9.74219e-05	0,00053505	o ōves
ATMEO 14	1.9227472-9232290	VVI		UK		0 0,514008	1.797096+300	1.79769e+	9.742196-00	, 3.50131e-) yes
NRT1.6	1:9400663-9403789	wт	МТ	ок		0 0.877865	1.79769e+308	308	3.2692e-08		yes
	1.5400000-5400705			OIX		0 0,077000	1.101000.000	1.79769e+	0.20020-00	01	yes
AT1G27570	1:9575425-9582376	WТ	МТ	ок		0 2.0829	1.79769e+308	308	9.76039e-06	6 647e-05	ves
	1:22159735-					2,0020		1.79769e+		9.84992e-	,
AT1G60095	22162419	WT	MT	ОК		0 0,688588	1.79769e+308	308	9.95901e-08	07	ves
								1.79769e+			·
AT1G03020	1:698206-698515	WT	MT	OK		0 1,78859	1.79769e+308	308	0,00913915	5 0,0277958	3 yes
								1.79769e+			
AT1G13609	1:4662720-4663471	WT	MT	OK	(0 3,55814	1.79769e+308	308	0,00021683	3 0,00108079	yes
								1.79769e+			
AT1G21550	1:7553100-7553876	WT	MT	OK		0 0,562868	1.79769e+308	308	0,00115582	2 0,0047 1497	7 yes
								1.79769e+		1.91089e-	
AT1G22120	1:7806308-7809632	WT	MT	OK	(0 0,617354	1.79769e+308	308	2.48392e-06		yes
	1:11238297-							1.79769e+		0,00028514	
AT1G31370	11239363	WT	MT	OK		0 1,46254	1.79769e+308	308	4.83523e-05		3 yes
	1:13253397- 13255570	\A/T	мт	ок		0 0 5 9 1 0 2 1	1 70760-1209	1.79769e+ 308	7 97955 06	5.46603e-	
APUM10	1:18010728-	WT		UK		0 0,561031	1.79769e+308	1.79769e+	7.87855e-06	0,00037473	yes
AT1G48700	18012871	wт	МТ	ок		0 0 556525	1.79769e+308	308	6.53917e-05		o Sves
A11646700	1:21746209-	VV I		UK		0 0,000020	1.191096+300	1.79769e+	0.559176-05	, () yes
AT1G59077	21833195	WT	МТ	ок		0 138.886	1.79769e+308	308	0,00122789	0 00496816	ives
	1:22121549-			on		100,000	1.101000.000	1.79769e+	0,00122100	0,00100010	,,
AT1G60050	22123702	WT	МТ	ок		0 0.370087	1.79769e+308	308	0.00117953	0,0048001	lves
									,	.,	,
AT4G15242	4:8705786-8706997	WT	MT	OK	0,0093071	2 17,9056	10,9098	-4,40523	1.05673e-05	7.13983e-0	5 yes
	5:12499071-										
AT5G33251	12500433	WT		OK	0,049837	5 52,2837	10,0349	-9,8119	C)	0 yes
AT4G12520	4:7421055-7421738	WT	MT	OK	0,019511	1 15,8516	9,66612	-3,90043	9.60217e-05	0,00052890)4 yes
	1:22100651-										
AT1G60020	22105276	WT		OK	0,011837	,	,	,	6.19504e-14		,
AT5G15360	5:4987235-4989182	WT	MT	OK	0,0988273	3 56,4834	9,1587	-10,4392	2 C)	0 yes

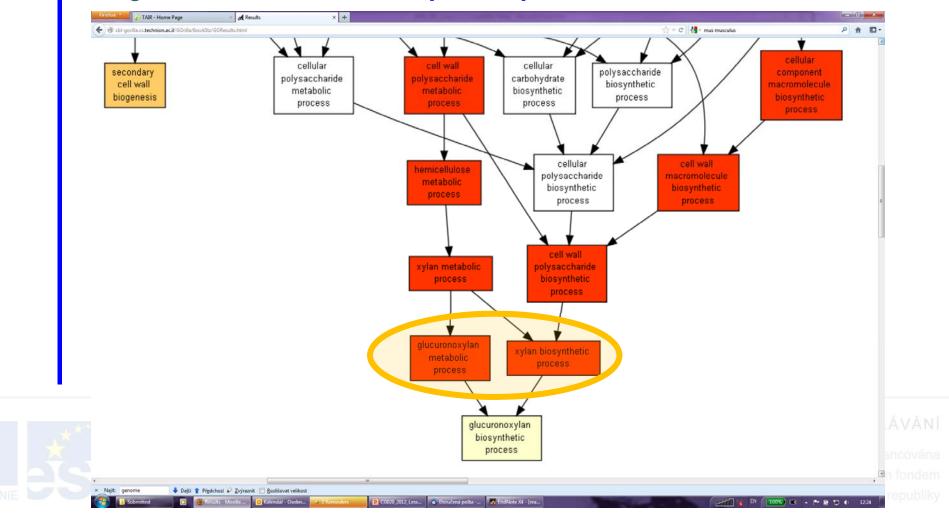

 One of the possible approaches is to study gene ontology, i.e. previously demonstrated association of genes to biological processes





a státním rozpočtem České republiky


Several tools allow statistical evaluation of enrichment for genes associated with specific processes


Eden et al., BMC Biinformatics (2009)

GOrilla - a tool for identifying enriched +			
🔄 🕲 chi-gorila.cs.technion.ac.il		thr ∀ C M - Google	ρ
	GO RILLA		
	Gene Ontology enRIchment anaLysis and visu	aLIZATION TOOT	
		-	
COrilla is a tool for identifying and visualizing enriched GO terms in ranked lists of genes. t can be run in one of two modes:			
 Searching for enriched GO terms that appear densely at the top of a ranked list of genes or Searching for enriched GO terms in a target list of genes compared to a background list of genes. 			
for further details see References.			
	Running example Usage instructions GOrilla News(Updated December 2017)	ber 3rd 2012) References	
Step 1: Choose organism			
Arabidopsis thaliana 🖌			
Step 2: Choose running mode			
Single ranked list of genes Two unranked lists of genes (target and background lists)			
Step 3: Paste a ranked list of gene/protein names			
Names should be separated by an <enter>. The preferred format is gene symbol. Other supported formats are: gene and protein RefSeq, Uniprot, Unigene and Ensembl. Use WebGetails for conversion from other identifier formats.</enter>			
Or upload a file: D/Results/2012/Marianz Procházet			
Step 4: Choose an ontology			
Process Function Component All			
Search Enriched GO terms			
Reset form			

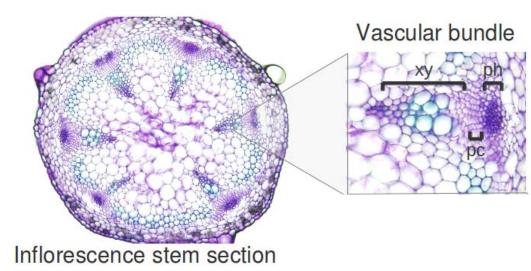
Results de Results de chi gonifa.cs.technion.ac.il/GOnifa/kn5th1q/GOResult	+	and the second	 ¹ (a) = α ¹ ¹	Soogle	P 🕈 🖸
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes	
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[+] Show genes	
hemicellulose metabolic process	2.97E-12	2.34E-9	3.29 (6331,77,999,40)	[+] Show genes	
xylan metabolic process	3.21E-12	2.03E-9	3.34 (6331,74,999,39)	[+] Show genes	
nitrate transport	3.64E-12	1.92E-9	3.92 (6331,58,891,32)	[+] Show genes	
cell wall polysaccharide biosynthetic process	5.74E-12	2.59E-9	3.30 (6331,75,999,39)	[+] Show genes	
cellular component macromolecule biosynthetic process	5.74E-12	2.27E-9	3.30 (6331,75,999,39)	[+] Show genes	

Coll-gonilla.cs.technion.ac.il/GOnilla/kn5fh1qi/GOResults.html#0045492				☆ ₹ C 🛛 🎦 • Google	۹ م
Description	P-value	FDR q-value	Enrichment (N, B, n, b)	Genes	
response to nitrate	4.76E-13	1.5E-9	4.13 (6331,55,891,32)	[+] Show genes	
glucuronoxylan metabolic process	1.01E-12	1.6E-9	3.43 (6331,72,999,39)	[+] Show genes	
xylan biosynthetic process	1.77E-12	1.86E-9	3.39 (6331,73,999,39)	[-] Hide genes GUT2 - putative glycosyltransferase PGSIP3 - plant glycogenin-like starch initiation protein 3 FRA8 - exostosin-like protein GAUT12 - alpha-1,4-galacturonosyltransferase AT4G22460 - bifunctional inhibitor/lipid-transfer protein/seed storage 2s albumin-like protein AT5G42180 - peroxidase 64 AT3G10910 - ring-h2 finger protein at172 LAC17 - laccase 17 KNAT7 - homeobox protein knotted -1-like 7 KNAT7 - homeobox protein knotted -1-like 7 AT4G0340 - protein knose - high protein with pak-box/p21- rho-binding domain AT5G46340 - putative o-acetyltransferase AT3G03200 - spartyl protease-like protein AT3G40200 - pathogenesis-related thaumatin-like protein AT3G40200 - putative polyalacturonase non-catalytic subunit jp630 MAP70-5 - microtubule-associated protein 70-5 AT3G50220 - hypothetical protein AG44 + protein agamou-like 44 IRX12 - laccase-4 NAC073 - ned omain containing protein 73 IRX3 - cellulose synthase a catalytic subunit 7 [udp-forming] AT4G27435 - hypothetical protein AT1G3300 - hypothetical protein AT1G300 - hypothetical protein AT1G300 - hypothetical protein AT1G300 - hypothetical protein AT1G7220 - ring-h2 finger protein at154 FRD3 - mate efflux family protein	
amiaallulasa matabalia process	2.070 12	22450	2 20 (6221 77 000 40)	f 1 Show conce	

Outline

Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling



INVESTICE DO ROZVOJE VZDĚLÁVÁN

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

□ Vascular tissue as a developmental model for MRN modeling

Benitez and Hejatko, submitted

)ĚLÁVÁNÍ

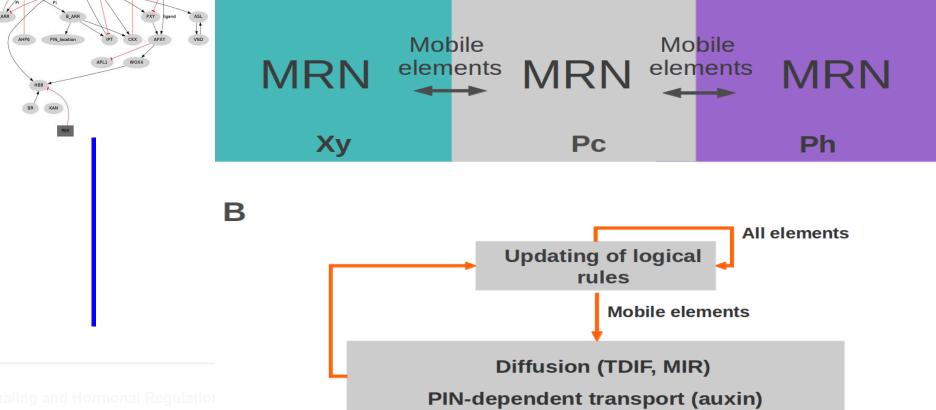
ufinancována álním fondem tem České republiky

□ Literature search for published data and creating small database

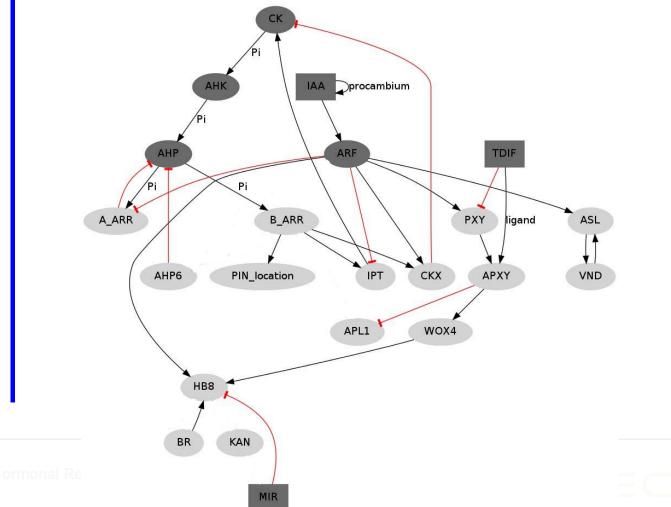
Interaction	Evidence	References
A-ARRs –∣ CK signaling	Double and higher order type-AARR mutants show increased sensitivity to CK.	[27]
	Spatial patterns of A-type ARR gene expression and CK response are consistent with partially redundant function of these genes in CK signaling.	[27]
	A-type ARRs decreases B-type ARR6-LUC.	[13]
	Note: In certain contexts, however, some A-ARRs appear to have effects antagonistic to other A-ARRs.	[27]
AHP6 – AHP	ahp6 partially recovers the mutant phenotype of the CK receptor WOL.	[9]
	Using an in vitro phosphotransfer system, it was shown that, unlike the AHPs, native AHP6 was unable to accept a phosphoryl group. Nevertheless, AHP6 is able to inhibit phosphotransfer from other AHPs to ARRs.	[9]

Formulating *logical rules* defining the *model dynamics*

Network node	Dynamical rule
СК	2 If ipt=1 and ckx=0 1 If ipt=1 and ckx=1 0 else
СКХ	1 If barr>0 or arf=2 0 else
AHKs	ahk=ck
AHPs	2 If ahk=2 and ahp6=0 and aarr=0 1 If ahk=2 and (ahp6+aarr<2) 1 If ahk=1 and ahp6<1 0 else
B-Type ARRs	1 If ahp>0 0 else
A-Type ARRs	1 If arf<2 and ahp>0 0 else

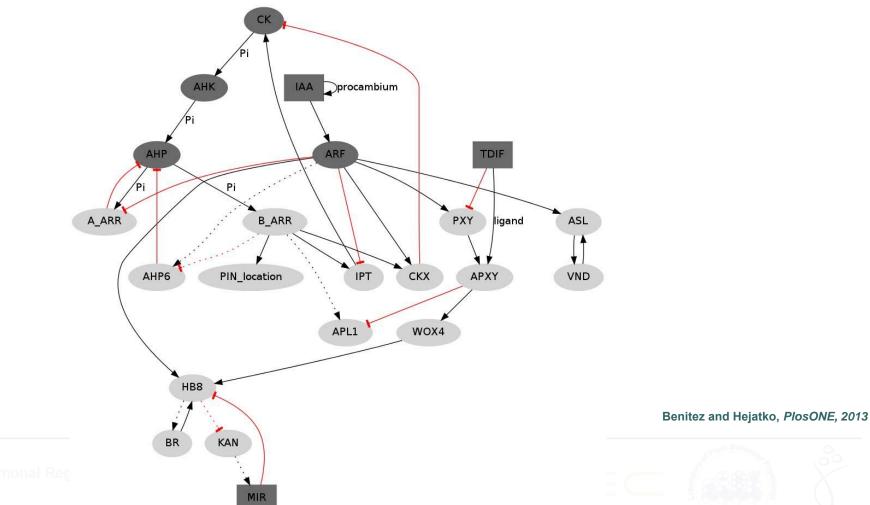

Benitez and Hejatko, submitted

Signaling and Hormonal Regulation of Plant Development

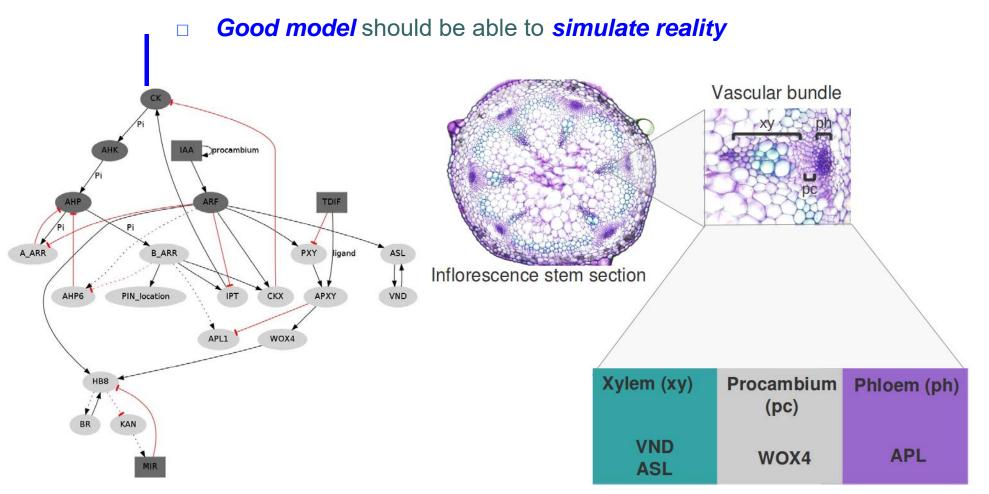


Specifying mobile elements and their model behaviour
 A
 A
 Mobile elements
 Mobile elements
 MRN

□ Preparing the *first version* of the model and its *testing*

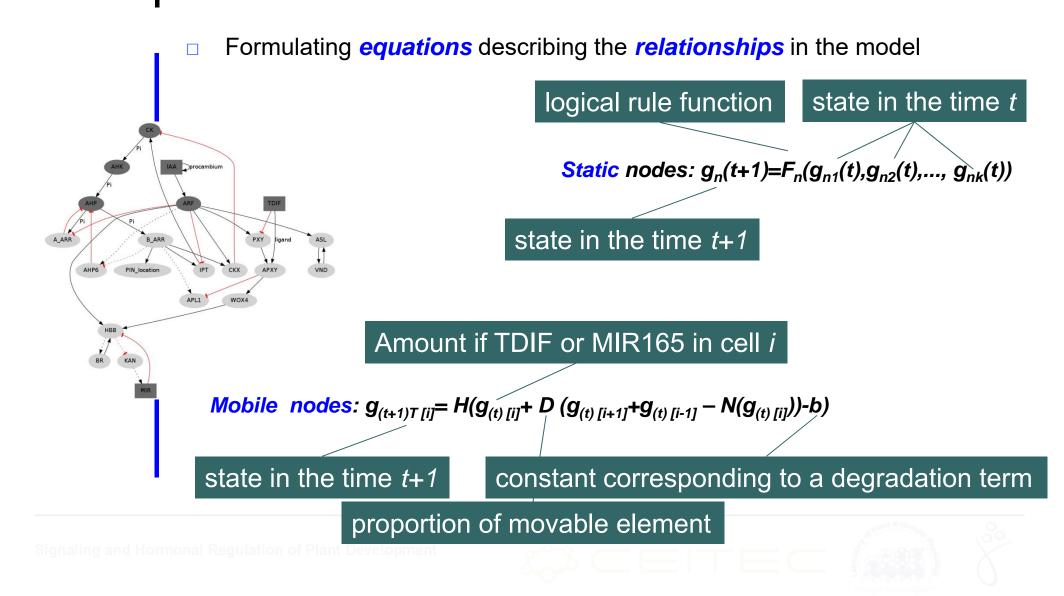


Signaling and Hormonal Re


□ Specifying of missing interactions via *informed predictions*

Interaction		Evidence	References
	$CK \rightarrow PIN7$ radial localization	Predicted interaction (could be direct or indirect)	
		Informed by the following data:	
		During the specification of root vascular cells in Arabidopsis thaliana, CK regulates the radial localization of PIN7.	[18]
		Expression of PIN7:GFP and PIN7::GUS is upregulated by CK with no significant influence of ethylene.	[18,20]
		In the root, CK signaling is required for the CK regulation of PIN1, PIN3, and PIN7. Their expression is altered in wol, cre1, ahk3 and ahp6 mutants.	[19]
	$CK \rightarrow APL$	Predicted interaction (could be direct or indirect)	
		Consistent with the fact that APL overexpression prevents or delays xylem cell differentiation, as does CKs.	[21]
			(TAIR,
Signaling and Horm	iona	Partially supported by microarray data and phloem-specific expression patterns of CK response factors.	ExpressionSet:1 005823559, [22])

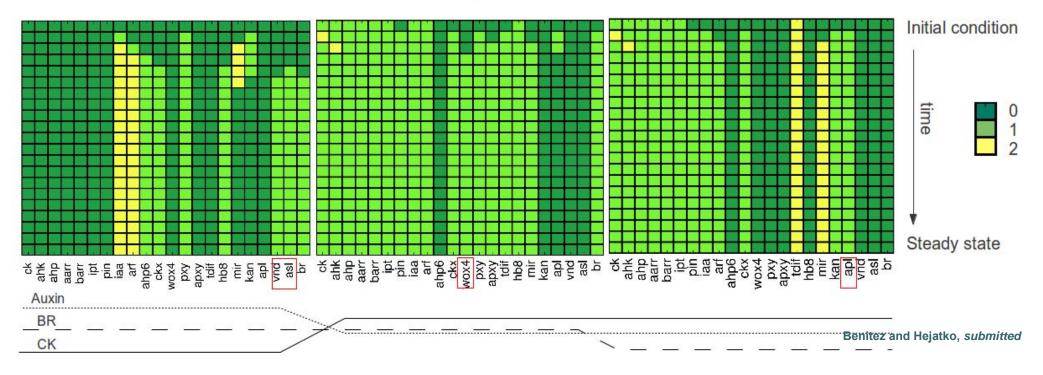
Preparing the *next version* of the model and its *testing*



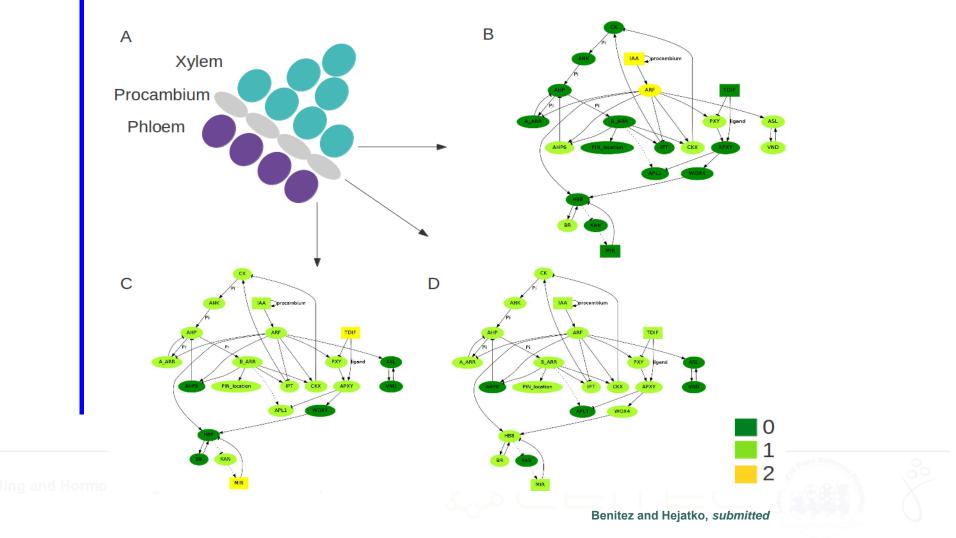
Signaling and Hormonal Reg

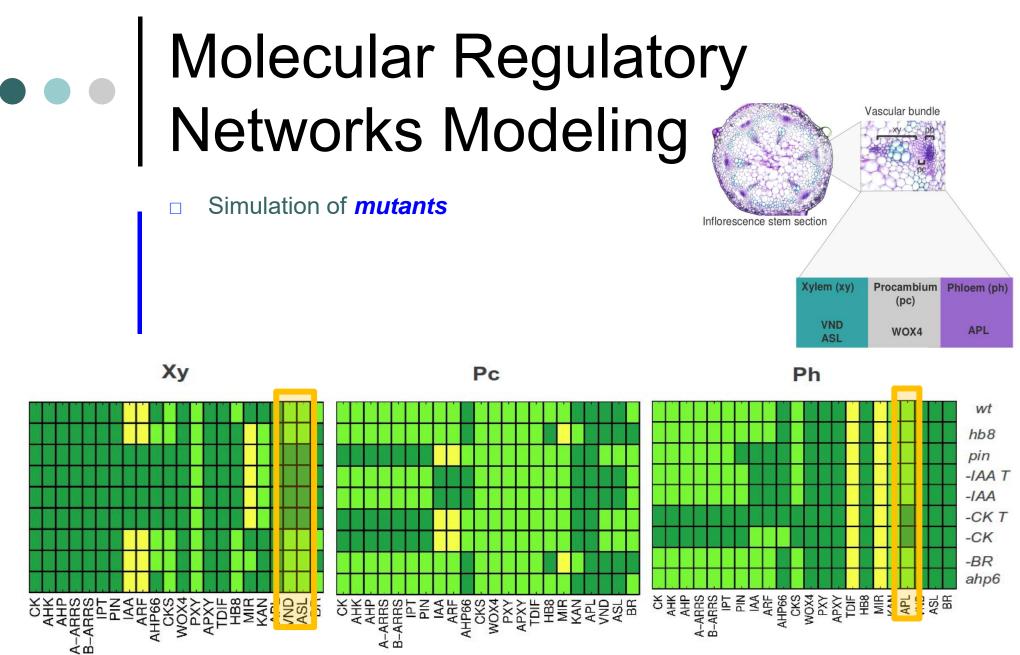
Benitez and Hejatko, PlosONE, 2013

Signaling and Hormonal Regulation of Plant Development


Good model should be able to simulate reality

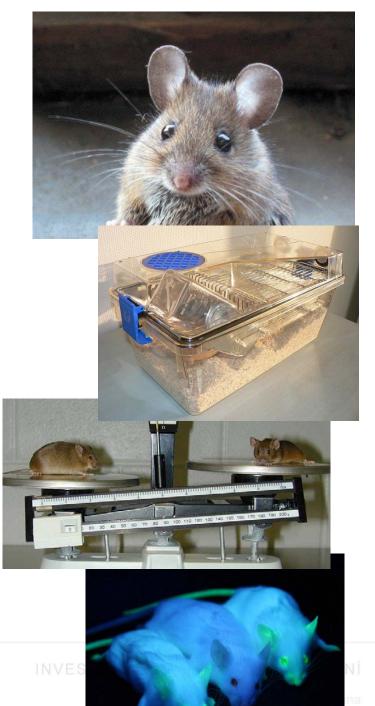
Procambium


Static nodes: $g_n(t+1) = F_n(g_{n1}(t), g_{n2}(t), ..., g_{nk}(t))$ Mobile nodes: $g_{(t+1)T[i]} = H(g_{(t)[i]} + D(g_{(t)[i+1]} + g_{(t)[i-1]} - N(g_{(t)[i]}))-b)$


Phloem

□ The good model should be able to simulate reality

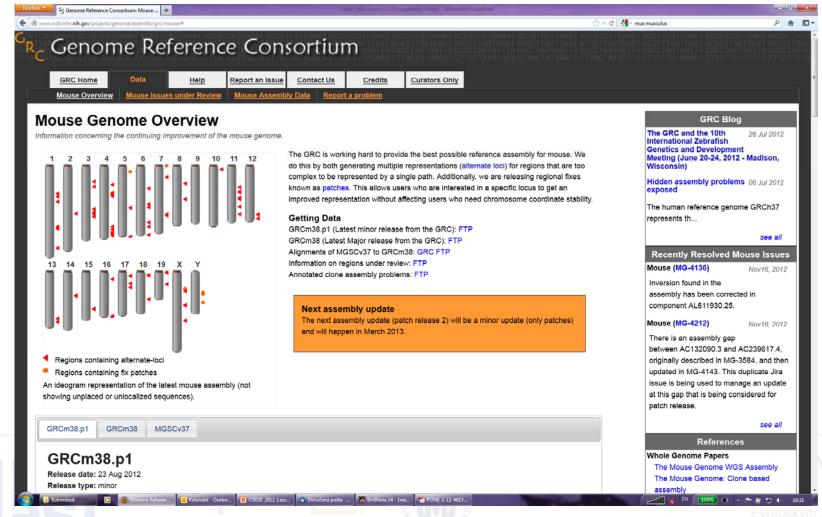
• • • Outline


Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling
- Model organisms
 - Mus musculus

Mus musculus house mouse

- Low requirements for area
- Relatively large number of offspring (3-14, 6-8 on average)
- Genome size is close to the size of human genome (about 3000 Mbp), the number of genes as well (about 24K)
- 20 chromosomes (19+1)
- Suitable for a wide range of physiological experiments (anatomical and physiological similarity to human)
- Possibility to obtain (quite easily) KO mutants and transgenic lines



Mus musculus

 Genome known since 2002 (<u>http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/mouse/</u>)

/ZDĚLÁVÁNÍ

spolufinancována

Outline

Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling

Model organisms

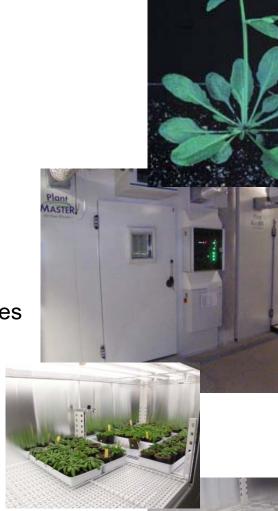
- Mus musculus
- Arabidopsis thaliana

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

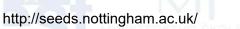
Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

Arabidopsis thaliana mouse-ear cress

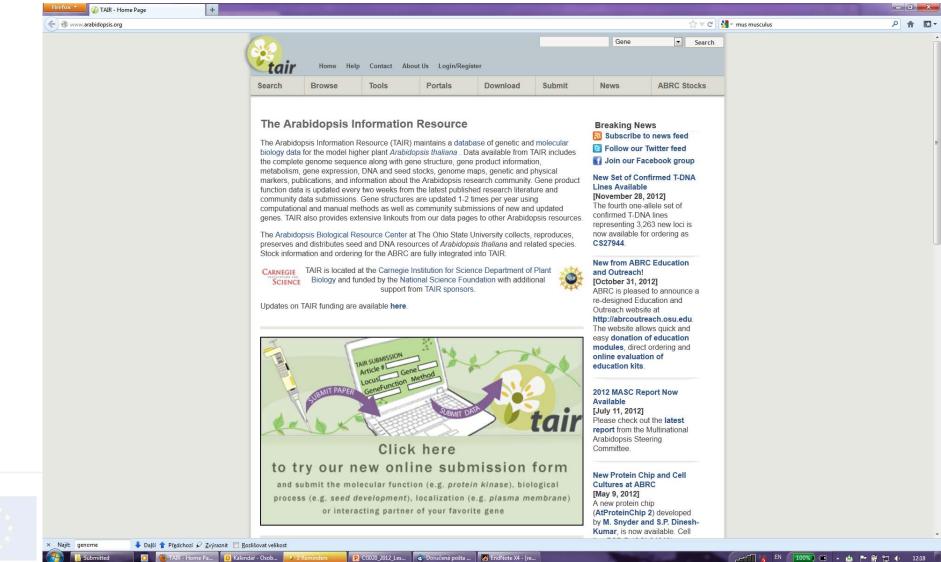
- Low requirements for cultivation area
- High number of seeds (20.000 per plant and more)
- Small and compact genome, (125 MBp, about 25.000 genes, average size 3 kb)
- 5 chromosomes
- Suitable for wide range od physiological experiments
- High natural variability (approximately 750 ecotypes (Nottingham Arabidopsis Seed Stock Centre))


Columbia 0

Landsberg 0


Wassilewskija 0

NVESTICE DO I


Evropským sociálním fondem tátním rozpočtem České republiky

STVÍ, OP Vzděláv

Arabidopsis thaliana mouse-ear cress

Genome known since 2000 (http://www.arabidopsis.org/)

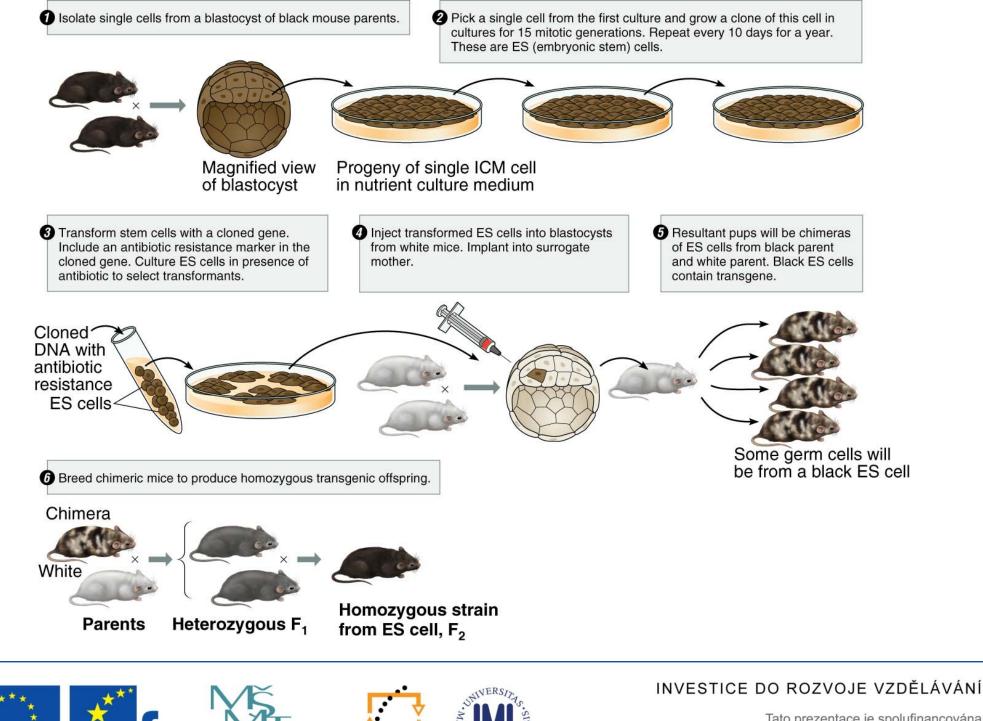
Outline

Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling

Model organisms

- Mus musculus
- Arabidopsis thaliana


Selected methods of molecular biology

Preparation of transgenic organisms

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem České republiky

OP Vzdělávání

pro konkurenceschopnost

TANA

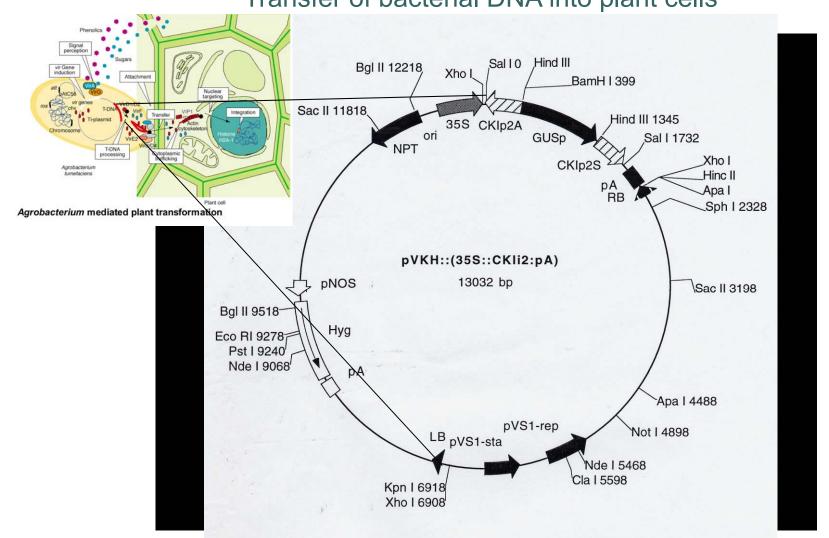
INIS

EVROPSKÁ UNIE

TERSTVO ŠKOLSTVÍ.

MLÁDEŽE A TĚLOVÝCHOVY

Transformation of Arabidopsis by Agrobacterium tumefaciens



Crown gall of raspberry caused by Agrobacterium tumefaciens.

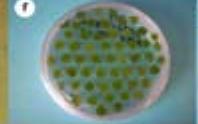
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Transformation of Arabidopsis by Agrobacterium tumefaciens Transfer of bacterial DNA into plant cells

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Transformation by cocultivation of leaf discs

d.


Post-managentic plant in a Viagenta ben, Bounta-of-explants for co-collingtics.

Exclusing a loaf them as its retro-grown plant. Done is a lasting they load.

Parchary lock dasis. Description and any angle memory of the second seco

Lord Birls Board tot. Speckarteripe autophysic or an appropriate.

Lost data aligned on calling tradecilion media-4.1M of er coust hairs. Photostan Jains -aberplateg. New horest geneticulation marging of August

Calles productor on tool site explaint. Green Show, indexed on load day explaint. Show in entrary represent only that pervised represents to the substant open.

the prevence of a other has agent.

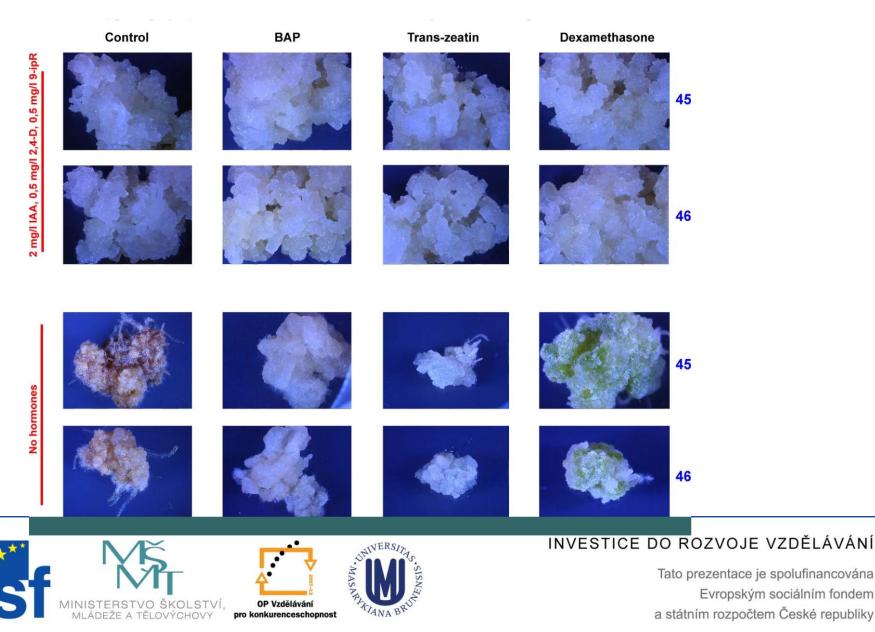
Eached discuss instruct into post-in-Kertical media (KDA).

Beette beginning to furth on earlierd shouts. Date in the presence of a velocities agent.

Extensive our production on evaluat drives. Fully represent transport: plans proving in

a Mayrein ben,

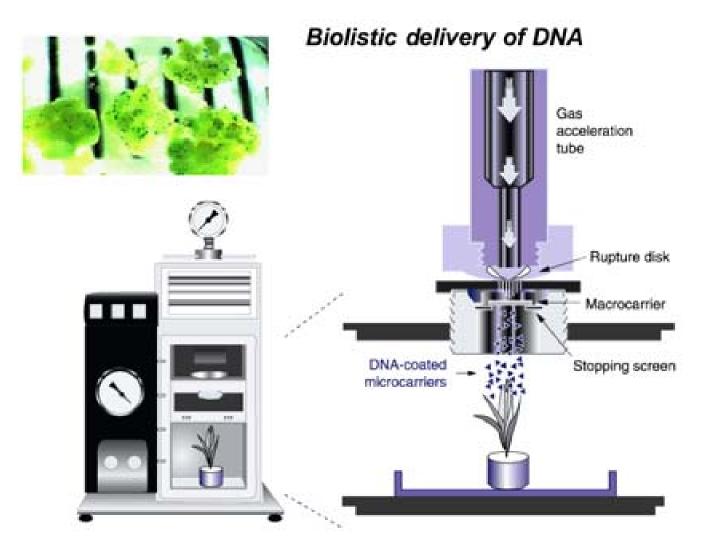
ÁVÁNÍ


MINIOTENOTVO OKOLOTVI, MLÁDEŽE A TĚLOVÝCHOVY

pro konkurenceschopnost

ncována 1 fondem a státním rozpočtem České republiky

Transformation by cocultivation of calluses


OP Vzdělávání

pro konkurenceschopnost

/INISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY

EVROPSKÁ UNIE

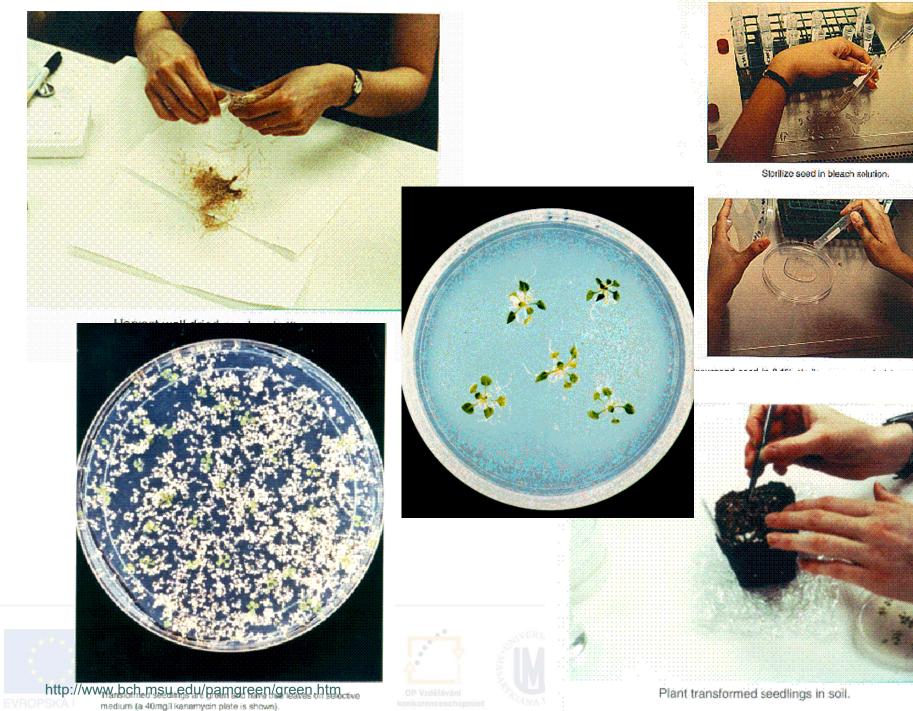
Transformation by biolistic delivery of DNA

Transformation of inflorescence

When plants have primary bolts 5-15 cm they are ready to infiltrate. Clipping of primary bolts is not necessary.

After infiltration, pots are placed on their sides to allow for drainage and are covered with plastic wrap. Plants are returned, in this state, to the growth chamber for 24 hours. After 24 hours, they are turned upright into a fresh flat.

EVROPhttp://www.bch.msu.edu/pamgreen/green.htm



Plants are allowed to grow to maturity. They are staked to avoid seed loss and facilitate plant harvesting. NOTE: Leaves degenerate within 2 weeks of infiltration. This is normal and does not affect seed set.

INVESTICE DO ROZVOJE VZDĚLÁVÁN

Transformation of inflorescence

VÁNÍ cována ondem publiky

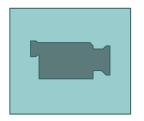
Outline

Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling

Model organisms

- Mus musculus
- Arabidopsis thaliana


Selected methods of molecular biology

- Preparation of transgenic organisms
- PCR

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

PCR

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Outline

Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling

Model organisms

- Mus musculus
- Arabidopsis thaliana

Selected methods of molecular biology

- Preparation of transgenic organisms
- PCR
- Design and preparation of primers (Dr. Hana Konečná)

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

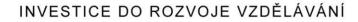
Summary

Tools of systems biology

- Gene ontology analysis
- Molecular Regulatory Networks Modeling
- Model organisms
 - Mus musculus
 - Arabidopsis thaliana

Selected methods of molecular biology

- Preparation of transgenic organisms
- PCR
- Design and preparation of primers (Dr. Hana Konečná)



INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Discussion

