
Motivation
Variables
Control
Arrays

Functions
Homework

2. Basic constructs

Ján Dugá£ek

October 13, 2017

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Table of Contents
1 Motivation

2 Variables
Why we need them
Available types
Usage
Exercises
Shortcuts

3 Control
Condition
While loop
For loop
Exercise

4 Arrays
Arrays
Problems with arrays
Arrays of higher dimension
Strings
Exercise

5 Functions
Calling functions
De�ning functions
const

The main function
Command line arguments
Exercise

6 Homework Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

An example of C code

#i n c l u d e <s t d i o . h>
#i n c l u d e <s t d l i b . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i f (a rgc < 2) {
p r i n t f ("Needs an argument \n") ;
r e t u r n 1 ;

}
i n t num = 1 ;
i n t a rg = a t o i (a rgv [1]) ;
wh i l e (a rg > 1) {

num = num ∗ arg ;
a rg = arg − 1 ;

}
p r i n t f (" Re s u l t %i \n" , num) ;
r e t u r n 0 ;

}

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

You don't need to know much to do anything

The elements of the previous example are enough to solve

almost any task

Of course, most of the language is exists to make

programming more practical

C is a minimalistic language itself, containing only 32 keywords

C++ in contrast embraces large quantities of functions for

most common purposes

We'll start with C and continue with the essential parts of

C++

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Variables

Everything in digital format is a number or a group of
numbers (addresses, texts, pictures, programs, ...)

There are several formats for numbers, depending on the
required size and need to support negative numbers and
decimals
Numbers are always binary code, groups of ones and zeroes, a
bit is a single value that can be zero or one, a byte is a group
of eight bits (82 = 256 possible values)

On computers, numbers usually can be saved on 1 byte (256
values), 2 bytes (216 = 65536 values), 4 bytes
(232 = 4294967296 values) or 8 bytes
(264 = 18446744073709551616 = 1.8 · 1019 values)

A number stored someplace with a name is called variable

A single number is called primitive data type

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Available types

int - standard sized integer (usually int32_t, range
-2147483648 to 2147483647)

short int - short sized integer (usually int16_t, range
-32768 to 32767)

char - very short sized integer, often used to store letters
(usually int8_t, range -128 to 127)

long int - short sized integer (usually int64_t, range
-9223372036854775808 to 9223372036854775807)

unsigned int - integer for non-negative values (usually
uint32_t, range 0 to 4294967295)

There are unsigned versions of all other sized integer types

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Available types

float - stores numbers with decimal point (usually 32-bit, 6
decimals, greatest numbers are around 1038)

double - stores numbers with decimal point (usually 64-bit, 15
decimals, greatest numbers are around 10308)

Processors usually support also long double that is 80 bits
large

Video cards support also a 16 bit �oat

Stored using IEEE754 (see: https:
//www.h-schmidt.net/FloatConverter/IEEE754.html)

Ján Dugá£ek 2. Basic constructs

https://www.h-schmidt.net/FloatConverter/IEEE754.html
https://www.h-schmidt.net/FloatConverter/IEEE754.html

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Advanced exercise

Do this only if you already know how to use variables!

Calculate π using the Monte Carlo method (scatter many
points randomly in a square, calculate the fraction of them
that is closer to its centre than a half of the square's side)

Hint: you may use rand() to generate random numbers

Why is the result so imprecise?

Challenge: Do it without computing any square root (neither
manually nor in the program)

Second powers of the same numbers are computed over and
over. Would it be useful to store the computed second powers
of numbers for later use?

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Usage

#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i n t x ;
x = 2 ;
i n t y = 4 ;
y = y ∗ (x + 4) ;
p r i n t f ("Computed %i \n" , y) ;
r e t u r n 0 ;

}

We �rst create variable x
Then we set value 2 to x
After, we create variable y and immediately set its value to 4
In the next step, x and 4 are summed, the result is multiplied
by y and set as a new value to y
The resulting value of y is written into the terminal with a
nice introduction

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Usage #2

#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i n t x = −1024 − 2 ;
s h o r t i n t y = x ∗ x ;
i n t z = x / 4 ;
p r i n t f ("Computed %i and %i \n" , y , z) ;
r e t u r n 0 ;

}

We �rst create variable x and save -1026 into it
Then we create variable y and save the square of x into it,
which does not �t there
After, we create variable z and set its value to x divided by 4,
because both x and 4 are integers, the result is an integer,
rounding the value down
The resulting values of y and z are written into the terminal

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Usage #3

#i n c l u d e <s t d i o . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

f l o a t x = 15 / 2 ;
f l o a t y = 15 .0 / 2 ;
f l o a t z = (f l o a t)15 / 2 ;
f l o a t w = x / 2 ;
p r i n t f ("Computed x=%f y=%f z=%f w=%f \n" , x , y , z , w) ;
r e t u r n 0 ;

}

We �rst divide 15 by 2, rounding down because both numbers are integers and
result is integer, recalculate it to �oat and save it into x

Then we divide 15.0 by 2, because 15.0 is a decimal, it is a �oat, arithmetic
between a �oat and an int yields a �oat, the resulting �oat is saved into y

After, we convert the integer 15 to �oat, divide it by 2, the resulting �oat is
saved into z
Next, we divide the �oat x by 2 and save it into variable w

The resulting values of variables are written into the terminal

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Exercises

1 Set 17 to x, divide it by 4 (rounded down), set x2 − 12 to y,
add 18 to the result and write the result as Result is 22

2 Calculate
(3+ 2− 12) · ((9− 2) · 5) + (3+ 2− 12) · (8+ ((9− 2) · 5))
without writing 3 + 2 - 12 or (9 - 2) · 5 more than once
or calculating anything yourself

3 Calculate 3+2−12
(9−2)· 5 + (3+ 2− 12) · (8+ (9−2)· 5

3+2−12) without

writing 3 + 2 - 12 or (9 - 2) · 5 more than once or
calculating anything yourself

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Why we need them
Available types
Usage
Exercises
Shortcuts

Shortcuts

Lines like x = x + 4 are used a lot, so they can be shortened
to x += 4
Analogically, you can use x -= y * 2 (subtract 2 multiplied
by y from x and save it into x), x /= 1.5 or x *= 1.01

x += 1 can be further shortened to x++ or ++x
Analogically, there is also x�� or ��x for x -= 1

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Advanced exercise

Do this only if you already know how to use if, while and
for!
Calculate x in x + 1 = 1

x

You may assume that x is positive

Challenge: Do not calculate anything more than 1000 times,
but limit your precision only by the maximum decimals that
can be stored in primitive types and use no prior knowledge

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Condition

i f (x < 0)
x ∗= −1;

Here, we check if x is lesser than 0
Only if x is lesser than 0, multiply by -1

This will replace x by its absolute

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Condition #2

i n t changed = 0 ;
i f (x >= 0) {

x ∗= −1;
changed = 1 ;

}

Here, we check if x is greater than or equal to 0

If the condition is met, multiply x by -1 and set variable
changed to 1

Variables de�ned in a block (the part in curly brackets) are not
available outside of it

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Condition #3

i n t changed = 0 ;
i n t e qua l s = (x == y) ;
i f (x > y | | x < 2 ∗ y) {

changed = 1 ;
i f (e qua l s) {

changed = 2 ;
}

}

Here, we check if x is greater than y or x is less than two
times y
We also check if x equals y and save the result of the
comparison into variable equals
If the �rst condition is met, 1 is assigned to changed and we
check if x was previously found to be equal to y
The result of comparison can be 1 (true) or 0 (false)

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Condition #4

i n t z = 0 ;
i f (x > y && x != 1) {

z = 1 ;
i f (x = y − 1) {

z = 2 ;
}

}

Here, we check if x is greater than y and x is not equal to 1

If the condition is met, 1 is assigned to z and y - 1 is
assigned to x and if x is non-zero (true), 2 is assigned to z

Do not confuse = (variable assignment) with ==
(comparison)! It is a huge source of errors!

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Condition #5

i n t z = 0 ;
i f (x > y && (x = y | | y == 1)) {

z = 1 ;
}

Here, we check if x is greater than y and if that is true, we
assign y into x and if the result is non-zero (true) or y is equal
to 1, the condition is met
If the condition is met, 1 is assigned to z

If x is not greater than y, the condition is never true and the
rest is ignored, thus y is never assigned to x

Do not confuse && and || with & and |, they mean something
else but usually lead to di�erent outcomes, so a program using
& instead of && may seem okay but then behave weirdly

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Condition #6

i n t z = 0 ;
i f (! (x > y) && (x == 1 | | (x = y))) {

z = 1 ;
}

Here, we check if it's not true that x is greater than y and if
that condition is met, we check if x is equal to one, if that is
false, we assign y into x, check if it's non-zero and go inside
the block if the one of these two conditions is met
If x is equal to 1, the condition is true regardless of the value
of y and the next condition is ignored, thus y is never assigned
to x

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Inline condition

i n t z = (! (x > y) && (x == 1 | | (x = y))) ? 1 : 0 ;

This does the same as the previous, if the condition is met, z
is initialised with 1, otherwise it's initialised with 0
It is useful only when assigning values into a variable
depending on a condition

i n t z = (x > 1) ? ((y > 1) ? 2 : 1) : 0 ;

It can be nested too
If x is greater than 1, then if y is greater than 1, 2 is set into
z, otherwise 1, if x is not greater than 1, 0 is set into z

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

While loop

uns i gned l ong i n t y = 1 ;
wh i l e (x > 1) {

y ∗= x ;
x−−;

}

while loop is much like if, but at the end of the block, it
checks for the condition again and if it's still true, the block is
executed again, after it is checked again and so it goes forever
while the condition is true
This particular loop computes the factorial of x (the result is
in variable y)

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

While loop #2

uns i gned l ong i n t y = 1 ;
wh i l e (x > 1) {

y ∗= x ;
i f (y > 100000000000000) break ;
x−−;

}

This is like the previous one, but we check if y is greater than
a billiard, if it is, the loop is broken, immediately interrupted
and the execution jumps out of it
A lesser variant of break is continue, which skips the rest of
the block but goes to check for the condition again
If there is nothing to stop the cycle from looping, the program
will freeze

wh i l e (1) {}

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

While loop #3

uns i gned l ong i n t y = 1 ;
do {

y ∗= x ;
x−−;

} wh i l e (x > 1) ;

This is a variation of the while loop that starts executing the
block and checks the condition if it's going to continue after

The only di�erence is that the block is executed at least once
regardless of the condition

The code above does not correctly compute the factorial of x,
if x is 0, the result is 0, which is incorrect because 0! = 1

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

For loop

i n t x = 0 ;
i n t i = 0 ;
wh i l e (i < 10) {

x += i ;
i ++;

}

De�ning a variable, changing it and checking it in a loop is so
common that a new construct was created to shorten it:

i n t x = 0 ;
f o r (i n t i = 0 ; i < 10 ; i++) {

x += i ;
}

This does the same as the code above

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

For loop #2

i n t x = 0 ;
f o r (i n t i = 0 ; i < 10 ; i++) {

i f (i % 2 == 1) con t i nu e ;
x += i ;

}

The �rst part de�nes a variable (but may also assign a value to an existing
variable or may be left blank), the second part is a condition that must be met
if it's to be repeated and the last part is a change that happens after every loop
(the condition is checked right afterwards, so in the case above, it never enters
the block with i equal to 10)

The % sign is modulo, the result of i % 2 is the remainder of division of i by 2
continue makes the loop restart, but i is increased before the check (unlike in
while)

The code above sums all even numbers between 0 and 10 (including 0,
excluding 10)

The variable change in each iteration of the loop is called iterator and usually
named i (if there are more of them, they are named i, j, k, ...)

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Condition
While loop
For loop
Exercise

Exercise

1 Calculate the product of odd numbers between 23 and 37

2 Calculate
∫ 4
−2 sin(x

2)dx

3 Calculate π by computing the ratio between the integral of a
constant and the integral of the circle function y = ±

√
1− x2

Hint:

#i n c l u d e <math . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

f l o a t x = 1 ;
f l o a t y = s i n (x) ;
f l o a t z = s q r t (x) ;

You must add -lmath to the compiler arguments or it won't
run)

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Arrays
Problems with arrays
Arrays of higher dimension
Strings
Exercise

Advanced exercise

Find primes lesser than 10000 using Eratostenes' sieve

Is it faster than trying to divide each number by all primes
lesser than its square root?

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Arrays
Problems with arrays
Arrays of higher dimension
Strings
Exercise

Arrays

i n t a r r a y [1 0] ;
f o r (i n t i = 0 ; i < 10 ; i++) {

a r r a y [i] = 20 ;
}
i n t o t h e rA r r a y [] = {3 , 1 , 8 , 27 , 2412412};

First, we create an array of 10 elements

Then we iterate through these 10 elements and set the value
of each to 20
continue makes the loop restart, but i is increased before the
check (unlike in while)

In the end, we create and initialise an array inline, its size is
determined by the number of elements in the initialiser

Elements are indexed from zero!

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Arrays
Problems with arrays
Arrays of higher dimension
Strings
Exercise

Problems with arrays

i n t a r r a y [1 0] ;
i n t a f t e r A r r a y = 42 ;
a r r a y [1 0] = 13 ;

The size of an array cannot be increased (it's a limitation of
the way computers work)

The size of an array cannot depend on a variable in C++ if
compiled with Microsoft Visual Studio

There are tricks around these issues
Because elements are indexed from zero, the last line writes at
the 11th element of a 10 element array

Array boundaries are not checked, so writing there overwrites
the variable behind the array

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Arrays
Problems with arrays
Arrays of higher dimension
Strings
Exercise

Arrays of higher dimension

i n t a r r a y [1 0] [1 0] ;
a r r a y [8] [3] = 5 ;

Arrays can be of any dimension

In memory, they are written as unidimensional arrays, the
location is calculated from the coordinates
They cannot be used as function arguments

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Arrays
Problems with arrays
Arrays of higher dimension
Strings
Exercise

Strings

A string is an array of variables of type char

#i n c l u d e <s t d l i b . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

char t e x t [] = "123" ;
i n t num = a t o i (t e x t) ;

Because the size of an array cannot be learned, every string
must end with a 0 (the 0 sign does not have numeric value 0)

Assigning a string into an integer assigns its address in memory

String can be converted into an integer with atoi (atof for
�oat), if stdlib.h is included

If the array is de�ned elsewhere, the type is char*

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Arrays
Problems with arrays
Arrays of higher dimension
Strings
Exercise

Exercise

1 Create an array of �rst 10 odd numbers and print them
afterwards

2 Create a pair of vectors of size 100, set some values to them
and compute their dot product

3 Create a pair of 2D arrays of size 100x100, set some values
into them and compute their matrix product

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Calling functions
De�ning functions
const

The main function
Command line arguments
Exercise

Calling functions

char t e x t [] = "123" ;
i n t num = a t o i (t e x t) ;
p r i n t f (" Conver ted %s to %i " , t ex t , num) ;

A function call consists of the function's name and a list of
comma-separated brackets in regular brackets

We have already seen the usage of several functions

Functions usually have �xed number of arguments with static
types, but exceptions are common (like printf)

printf deduces its arguments from the formatting string - %s
is substituted by a string, %i by an integer, %f by a �oat, the
order must be the same
A function can call itself recursively

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Calling functions
De�ning functions
const

The main function
Command line arguments
Exercise

De�ning functions

f l o a t squa r e (f l o a t num) {
num = num ∗ num ;
r e t u r n num ;

}
i n t main (i n t argc , cha r ∗∗ a rgv) {

f l o a t a = 3 . 5 ;
f l o a t b = squa r e (a) ;

A function needs to be de�ned with a return type followed by its
name and the comma-separated argument list in brackets
Its arguments are copied into the variables created when the
function is called, so the variables used in the call are not changed
from inside the function
Function ends when return is called, returning the value after the
keyword as the function's result
If a function is not meant to return anything, the return type is
void and nothing follows the return keyword

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Calling functions
De�ning functions
const

The main function
Command line arguments
Exercise

const

f l o a t squa r e (con s t f l o a t num) {
cons t r e s u l t = num ∗ num ;
r e t u r n r e s u l t ;

}

If a variable is declared as const, it cannot be changed (unless
the program is writing at an incorrect address)

It's useful to make sure that some variables are not changed
when they are assumed to be the same all the time they are
de�ned
It's recommended to write const before every variable that
does not need to be changed (it's called const correctness)

It allows the compiler to make additional assumptions about
the code and optimise it better
Note: pre�xes to variable types like this are called modi�ers

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Calling functions
De�ning functions
const

The main function
Command line arguments
Exercise

The main function

i n t main (i n t argc , cha r ∗∗ a rgv) {
p r i n t f (" He l l o wor ld ! ") ;
r e t u r n 0 ;

}

It is the function called when the program starts

Its arguments are the space-separated command line
arguments given by the user

Its return value is the program's return value, it should be 0 if
the program �nished correctly or something else if it failed; the
number may indicate the reason of failure (in command lines,
counterintuitively, 0 is true and anything else is false)

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Calling functions
De�ning functions
const

The main function
Command line arguments
Exercise

Command line arguments

#i n c l u d e <s t d l i b . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

i n t num = a t o i (a rgv [1]) ;

argv is an array of strings that were written as command line
arguments

If the program is named prog, calling it as ./prog 12 will
make the program start with ./prog in argv[0] and 12 in
argv[1]

In this case, we convert argv[1] from string to a number and
set it into variable num
argc contains the size of the argv array

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Calling functions
De�ning functions
const

The main function
Command line arguments
Exercise

Exercise

1 Create a function that computes the third power of its
argument

2 Create a function that powers the �rst argument by the second
argument, using �oat multiplication or division if the exponent
is -1, 0, 1, 2, 3 or 4

Hint:

#i n c l u d e <math . h>
i n t main (i n t argc , cha r ∗∗ a rgv) {

f l o a t x = 2 ;
f l o a t e leventhPowerX = pow(x , 1 1) ;

You must add -lm to the compiler arguments or it won't run)

Ján Dugá£ek 2. Basic constructs

Motivation
Variables
Control
Arrays

Functions
Homework

Homework

Find the values of a, b and c where
f (x) = a · ln(x · b)− b ·

√
200− x · c + c has the smallest sum

of second powers of values of f (1), f (2), ... f (100)

Advanced homework: Create a calculator program that reads a
formula with plus, minus, multiplication and division from
command line arguments, assuming that all operations are
brackets to avoid dealing with operator priority (you may want
to assume that all numbers, signs and brackets are separated
by breaks into di�erent command line arguments or written all
as one argument)

Ján Dugá£ek 2. Basic constructs

	Motivation
	Variables
	Why we need them
	Available types
	Usage
	Exercises
	Shortcuts

	Control
	Condition
	While loop
	For loop
	Exercise

	Arrays
	Arrays
	Problems with arrays
	Arrays of higher dimension
	Strings
	Exercise

	Functions
	Calling functions
	Defining functions
	const
	The main function
	Command line arguments
	Exercise

	Homework

