
Pointers
Debugging

Memory sections
Homework

3. Memory

Ján Dugá£ek

September 11, 2017

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Table of Contents

1 Pointers
Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

2 Debugging
Practices
Programs

3 Memory sections
Memory sections
Heap
Exercises

4 Homework

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Pointers

Every variable is stored at a certain address

This address can be obtained and is often very useful

The variable type that contains an address is called pointer,

pointer to a di�erent variable type is itself a di�erent type

A pointer to an integer is written as int*, a pointer to a

character as char*, pointer to a pointer to an integer as int**

The size of a pointer is usually 8 bytes (64-bit architecture) or

4 bytes (32-bit architecture)

This can be explained in several slides, but learning to use it

properly takes a lot of time

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Pointers #2

i n t a = 2 ;
i n t ∗ b = &a ;
i n t c = ∗b ;
∗b = 3 ;

Here, we �rst de�ne and set a variable a

Then, we get its address and save it into variable b

After, access the contents of whatever b is pointing that (it is

variable a) and save into variable c

Last, we save 3 into the contents of what b is pointing at,

setting variable a to 3

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Pointers #3

vo i d swap (i n t ∗ a , i n t ∗ b) {
i n t buf = ∗a ;
∗a = ∗b ;
∗b = buf ;

}

i n t main (i n t argc , cha r ∗∗ a rgv) {
i n t a = 3 ;
i n t b = 8 ;
swap(&a , &b) ;

Function swap takes addresses of two integers and swaps their

contents (the addresses are copied as arguments, their contents

are the same, so it changes the values outside of the function)

int* a can be written as int *a, int * a or int*a

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Const pointers

con s t cha r ∗ a ;
cha r ∗ con s t b ;
con s t cha r ∗ con s t c ;

a is a pointer to a constant, so the pointer may be changed,

but the data it points to cannot

b is a constant pointer, so the pointer cannot be changed, but

the data it points to can

c is a constant pointer to a constant, so neither the pointer

nor the data can be changed

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Pointers and arrays

i n t sum(i n t ∗ a r r , un s i gned i n t s i z e) {
i n t t o t a l = 0 ;
f o r (uns i gned i n t i = 0 ; i < s i z e ; i++)

t o t a l += a r r [i] ;
r e t u r n t o t a l ;

}

i n t main (i n t argc , cha r ∗∗ a rgv) {
i n t a r r a y [] = {2 , 3 , 8 , 0 , 21 , 3983989 , 42} ;
i n t i nTo t a l = sum(a r ray , 7) ;

An array is used identically as a pointer to the �rst element of
the array and a pointer is used as an array that begins at
address contained in the pointer

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Pointers and arrays #2

l ong i n t pack (s h o r t i n t a , s h o r t i n t b , s h o r t i n t c , s h o r t i n t d) {
s h o r t i n t a r r a y [] = {a , b , c , d } ;
l ong i n t ∗ t o g e t h e r = (long i n t ∗) a r r a y ;
r e t u r n ∗ t o g e t h e r ;

}

This is a function that packs four small variables of type short

int (2 bytes) into a single variable of type long int (8 bytes)

First, we copy these variables into an array

The array can be used as a pointer of type short int*, but

we change its type to pointer of type long int* (the contents

of the variables is not changed)

Then we can read the array as a single variable of type long

int

We return its copy as a result

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Pointers summary

Star(s) between variable type and variable name in declaration

(int* a) - declaration of a pointer variable

Star(s) before variable name outside declaration (*a) - access

to address the pointer contains

Ampersand before variable name outside declaration (&a) -

obtain pointer to the variable

Stars before variable remove stars from its type, ampersands

before variable add stars to its type

Pointer multiplication is useless and thus unde�ned, so these

operations are not easily confused with multiplication

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Pointer arithmetic

i n t sum(i n t ∗ a r r , un s i gned i n t s i z e) {
i n t t o t a l = 0 ;
f o r (uns i gned i n t s t e p = 0 ; s t ep < s i z e ; s t e p++) {

t o t a l += ∗ a r r ;
a r r++;

}
r e t u r n t o t a l ;

}

This function does the same as the earlier one
Incrementing works on pointers, it does not increase the address by
1, but by the size of the object whose address they hold (if the
pointer is an array, then it's the next element)
Adding to pointer increases its address by a multiple of the size of
the object
Subtraction and decrementing works too
You can set 0, or NULL to a pointer as a reliably wrong value to set
an empty pointer (and use it in a condition)

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Pointers
Const pointers
Pointers and arrays
Pointer arithmetic
Exercises

Exercises

1 Write a function that computes both sine and cosine of a number, saving
the results into two variables whose addresses are given to the function as
arguments

2 Write a function that swaps two pointers

3 Write a function that uses pointer arithmetic to return the sum of
elements in an array, assuming that the last element is 0

4 Write a function that sums elements of two arrays, saving the sum of
each pair into third array (three arrays and sizes given as arguments)

Advanced:
1 Write a function that splits a string (char*) into two strings according a

separator given as the second argument, the two strings' addresses will be
written to variables with addresses given by the user (you can split a
string by setting a terminating 0 at the end of one and saving the pointer
to the beginning of the second one)

2 Write a program that reads input (using getchar) from a line of any size
and then writes it back (without using dynamic allocation)

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Practices
Programs

Debugging practices

The program does not work - it happens - we say that it's bugged and
thus it needs debugging

The most usual approach is to check the contents of variables, it can be
done with printf for review when the program has ended

Finding where the results are unexpected usually helps pinpoint the place
where the error happens

If the program writes into addresses that are nowhere near a place where
it's allowed to write, the program crashes, usually discarding some recent
stu� written into the command line, in that case, use fprintf to print
into stderr

l ong i n t a r r a y [1 6] ;
i n t ∗ p o i n t e r = (i n t ∗) ma l l o c (s i z e o f (i n t)) ;
a r r a y [1 6] = 241352523; // Ooops , o v e r w r i t e s p o i n t e r
f p r i n t f (s t d e r r , " p o i n t e r : %p" , p o i n t e r) ; // See what ' s up
∗ p o i n t e r = 10 ; // Wr i t i ng at add r e s s 241352523 , c r a s h e s

Use it like printf, but use stderr before the usual arguments

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Practices
Programs

Debugging programs

When debugging, it's very useful to compile with -g (makes
programs larger) and without -O3 (without it, programs are
slower)
The -g argument allows debugging programs to �nd the line in
source code that caused a problem
gdb is a debugging program that runs programs in a special
interface that can break at given line, view variables' contents
and investigate where crashes happened, without slowing
programs down; it is directly controlled by QtCreator
valgrind is an interpreter of assembly code, it allows �nding
where crashes happen, it can detect invalid reads (reading
from variables that are not allocated), invalid writes (writing
into variables that are not allocated) and detect memory that
has not been freed; it slows down the program considerably
and modi�es its reaction to invalid reads or writes (may cause
it to stop crashing on it or to start crashing on it)

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Memory sections
Heap
Exercises

Memory sections

There are 5 places in memory used by the program

Stack - the place where local variables are created, variables here are
automatically destroyed when their scope ends, size is limited to several
megabytes

Heap - access granted on demand, exists until asked to free it, often
called dynamic allocation

Constant data - constants de�ned in code, may be read, but writing there
causing the program to crash

Non-constant data - global variables (de�ned outside any block) are
stored here
Code - the compiled source code, can't be neither changed nor read on
most OS

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Memory sections
Heap
Exercises

Heap

Why do we need it?

i n t ∗ sumArrays (i n t ∗ a r r , i n t ∗ ar r2 , un s i gned i n t s i z e) {
i n t arrSum [s i z e] ;
f o r (uns i gned i n t i = 0 ; i < s i z e ; i++) {

arrSum [i] = a r r [i] + a r r 2 [i] ;
}
r e t u r n arrSum ;

}

The code above does not work properly, because variable arrSum is
destroyed when the function ends, meaning that the result will be
overwritten very soon (and editing it then will change new variables
created in its place)

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Memory sections
Heap
Exercises

Heap #2

#i n c l u d e <s t d l i b . h>
i n t ∗ sumArrays (i n t ∗ a r r , i n t ∗ ar r2 , un s i gned i n t s i z e) {

i n t ∗ arrSum = (i n t ∗) ma l l o c (s i z e o f (i n t) ∗ s i z e) ;
f o r (uns i gned i n t i = 0 ; i < s i z e ; i++) {

arrSum [i] = a r r [i] + a r r 2 [i] ;
}
r e t u r n arrSum ;

}

We can allocate memory on heap that will stay allocated until explicitly freed or
the program ends
It is allocated by function malloc from library stdlib.h

malloc does not care about the variable type we'll store there, so we must set
the size in bytes (size of the array times size of an element, not only the size of
the array!)
sizeof is not a function, it is replaced by the size of the variable type in
brackets by the compiler, be careful not to get the size of a pointer instead
of the size of the variable whose address it holds!
malloc returns a pointer to unspeci�ed type, void*, you need to change its type

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Memory sections
Heap
Exercises

Heap #3

i n t a [] = {2 , 8 , 666} ;
i n t b [] = {7 , 9 , 777} ;
i n t ∗ summed = sumArrays (a , b , 3) ;
// Do some s t u f f
f r e e (summed) ;

Sections between // and new line are ignored and can be used to disable
parts of the code or to add a comment

Here, we use the function sumArrays de�ned in the previous slide

The memory allocated by malloc must be freed explicitly or the program
will keep it until it ends (even if the variable holding its address is long
forgotten)

The memory is freed using function free from stdlib (you must use the
pointer to exactly the same address as given by malloc)

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Memory sections
Heap
Exercises

Exercises

1 Write a function that returns an array of Fibonacci's numbers of size
given by an argument

2 Write a function that resizes a dynamically allocated array to a new size,
returning the new pointer and copying the contents of the old one to the
new one

3 Change the function from the previous exercise so that it returns no
value, but accepts a pointer to the array it has to resize

4 Write a program that reads the �rst argument and prints the section until
the �rst occurrence of q, assuming that the �rst argument can be of any
size and you cannot create an array that is too large

Advanced:
1 Write a function that splits a string into strings according a separator

given as the second argument, returns a dynamically allocated array of
strings (char*)

2 Write a function that sorts an array of numbers (any algorithm except
bogosort or similar)

Ján Dugá£ek 3. Memory

Pointers
Debugging

Memory sections
Homework

Homework

Write a function that uses one number as argument, it �nds the closest
greater prime number and returns an array whose each element is an
array of prime divisors of the numbers between the given number and the
closest greater prime

Advanced homework: Create a calculator program that reads a formula
with numbers, single letter long variables, plus, minus, multiplication and
division from command line arguments, assuming that all operations are
brackets to avoid dealing with operator priority as �rst argument and
�nds values of these variables where the sum of its values in range given
as second and third argument is the closest to zero

Ján Dugá£ek 3. Memory

	Pointers
	Pointers
	Const pointers
	Pointers and arrays
	Pointer arithmetic
	Exercises

	Debugging
	Practices
	Programs

	Memory sections
	Memory sections
	Heap
	Exercises

	Homework

