
Overview
User's input

Files
Custom variable types

Homework

4. Text parsing

Ján Dugá£ek

November 10, 2017

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

Table of Contents

1 Overview
Overview

2 User's input
getchar()
scanf()
Exercises

3 Files
Reading �les
Writing �les
Exercises

4 Custom variable types
struct
union
enum
Combinations
Shortening
Exercises

5 Homework

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

Overview

Overview

You know quite a bit about this already

We'll study how to open �les, read them and write new ones

We'll learn a few useful tricks and about parsing �les that are

not human-readable

This is mostly an exercise for pointer usage

C++ o�ers many tricks to make this easier, but they are now

always applicable (or grossly ine�cient in the situation)

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

getchar()
scanf()
Exercises

Input with getchar()

char b u f f e r [3 0] ;
cha r got ;
i n t i = 0 ;
f o r (; i < 29 && (got = ge t cha r ()) != ' \n ' && got ; i++)

b u f f e r [i] = got ;
b u f f e r [i] = 0 ;

Here, we �rst de�ne an array for storing text buffer, a variable to
store read characters got and a position iterator i
Then we use the function getchar() to read from input (what is
written into the command line after the program is started)
It is read until it �nds a newline symbol or the input ends or the
array is full
After the cycle, a terminating character is set
getchar() reads the line after a newline is pressed, until that, the
program sleeps
stdio.h needs to be included for this

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

getchar()
scanf()
Exercises

scanf()

char b u f f e r [3 0] ;
s c a n f ("%s \n" , b u f f e r) ;

scanf() is a function that parses text in most cases, returns

the number of variables parsed

It's much like a reverse printf()

If the input is too long, the function writes behind the array

(bu�er over�ow), which is one of the primary ways how

systems get hacked (reading integers or �oats in this way is

�ne)

To prevent it, use function scanf_s() that accepts an

additional argument after each string that contains the

maximum size allowed (Microsoft-only, unfortunately)

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

getchar()
scanf()
Exercises

Exercises

1 Write a program that reads one line of the user's input, writes it back and
exits (assuming maximum text size 100)

2 Write a program that reads several lines of numbers (until an empty line
is inserted) and writes back their average

3 Write a program that reads one line of the user's input, replaces letters
with capitals, writes the result and exits (assuming maximum text size
100)

4 Write a program that reads a 3x3 matrix (space separates numbers on
one line, newline separates lines) and outputs its determinant
(https://en.wikipedia.org/wiki/Rule_of_Sarrus)

Advanced:
1 Write Angry internet poster simulator that reads input of any size,

accepts a command line argument determining the percentage of words
that will be capitalised and writes the result back

2 Write a program that reads a matrix of any size (space separates numbers
on one line, newline separates lines) and outputs its determinant
(https://en.wikipedia.org/wiki/Laplace_expansion)

Ján Dugá£ek 4. Text parsing

https://en.wikipedia.org/wiki/Rule_of_Sarrus
https://en.wikipedia.org/wiki/Laplace_expansion

Overview
User's input

Files
Custom variable types

Homework

Reading �les
Writing �les
Exercises

Files

FILE∗ f i l e = fopen (" f i l e . t x t " , " r ") ;
i n t number ;
f s c a n f (f i l e , "%i \n" , &number) ;
cha r c h a r a c t e r = f g e t c (f i l e) ;
f c l o s e (f i l e) ;

fopen() opens a �le, �le name (if it is in the same folder, otherwise there
can be the path to the �le) is the �rst argument, if reading, second
argument is "r"
fscanf() is a version of scanf() for reading �les, the only di�erence is
that the �le is placed before its �rst argument
Use feof() to check if there's still something to read
fscanf() is also potentially insecure and fscanf_s() might be useful if
using a Microsoft compiler
Also, fgetc() is analogical to getc() for reading from �les, it returns
EOF if there is nothing left to be read
The �le has a position, so multiple reads read parts that follow one after
another (you can use rewind() to get to the beginning of the �le)
File should be closed with fclose()

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

Reading �les
Writing �les
Exercises

Files

FILE∗ f i l e = fopen (" f i l e . t x t " , "w")
f p r i n t f (f i l e , " He l l o wor ld !\ n") ;

fopen() opens a �le, if the second argument is "w", the �le is

created (if it exists, it is cleared) and ready to be written into,

if it is "a", new text will be appended to its end

fprintf() is a version of printf() for writing into �les, the

only di�erence is that the �le is placed before its �rst argument

fprintf() is faster than printf, so it can be useful to write

into �les if a lot of information needs to be printed (in the

order of tens of megabytes)

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

Reading �les
Writing �les
Exercises

Exercises

1 Write a program that reads numbers from a �le (one number
per line) and writes the largest one

2 Write a program that writes a table of the sine function into a
�le (x and sin(x) separated by tab on each line)

3 Write a program that reads one �le, replaces all letters by
capitals and writes that into another �le

Advanced:
1 Write a parser of simple commands that reads �les and

executes them, supports 26 variables (from a to z), the �le
name is given as command line argument and result printed,
should be able to execute this:

a=3
b=2+a
c=b∗a
d=c−a
r e t u r n d

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

Custom variable type: struct

s t r u c t someStu f f {
s h o r t i n t i nd ex ;
cha r s t u f fTyp e ;
f l o a t v a l u e ;

} ;
s t r u c t someStu f f a = {1 , ' a ' , 1 2 . 5 } ;

struct is a custom variable type, composed of other variable
types (not necessarily primitive ones)

In memory, they are saved similarly to arrays, but the elements
are named and may be of di�erent types (with di�erent sizes)

They may be initialised like arrays, but unlike arrays they are
copied when given as function arguments

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

struct

s t r u c t someStu f f {
s h o r t i n t i nd ex ;
cha r s t u f fTyp e ;
f l o a t v a l u e ;

} ;
s t r u c t someStu f f a = {1 , ' a ' , 1 2 . 5 } ;

It is important to know that variables smaller than word size (that is 8
bytes on 64-bit architectures) are stored only on addresses divisible by
their size (larger ones must be on addresses divisible by word size), so
index (short int, 2 bytes) will always be saved on an address divisible
by 2, value (float, 4 bytes) on an address divisible by 4 and
stuffType, char, size 1 can be saved anywhere

Although index and stuffType occupy only bytes 0, 1 and 2, byte 3
cannot be occupied by value because it's not divisible by 4 and thus it
will be saved at bytes 4-7
The size of someStuff is 8

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

struct #2

s t r u c t p a r s i n g {
char f i r s t [4] ;
cha r end ;
cha r second [4] ;
cha r end2 ;

} ;

cha r unpar sed [] = "0245 3245" ;
s t r u c t p a r s i n g pa r s ed = ∗ ((s t r u c t p a r s i n g ∗) unpar sed) ;
pa r s ed . end = 0 ;
pa r s ed . end2 = 0 ;
p r i n t f ("%i , %i \n" , a t o i (pa r s ed . f i r s t) , a t o i (pa r s ed . second)) ;

Structure parsing is a custom variable type, composed of 10 variables of type
char
Because it is identical to an array with 10 elements, we can covert an array to it
Named members are accessed using the . operator, if we have a pointer to the
struct, we use -> instead

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

struct #3

struct may be used only in parsing of �les where everything
has a �xed position on its line

However, programs often store data in formats that are not
human readable, often in the form of struct directly saved
into a �le, with values mostly set over 4 bytes in IEEE 754,
meaning they may contain anywhere the 0 character that ends
strings; in that case, functions like fscanf are useless

To read or write �les like this, use "rb", "wb" or "ab"
(depending if you read, write or append) as arguments to
fopen

struct is incredibly useful for many other things as we shall
see later

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

union

un ion someStu f f {
char raw [8] ;
doub l e number ;

} ;
un ion someStu f f a ;
f o r (i n t i = 0 ; i < 8 ; i++)

a . raw [i] = f g e t c (f i l e) ;
p r i n t f ("Read %f \n" , a . number) ;

union is similar to struct, but its contents are saved on the
same place instead of one after another, allowing to access the
same data as di�erent types comfortably

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

enum

enum l o g i c {
no = 0 ,
maybe = 1 ,
ye s = 2

} ;

enum l o g i c log i c_and (enum l o g i c a , enum l o g i c b) {
i f (a == yes && b == yes) r e t u r n ye s ;
i f (a == no | | b == no) r e t u r n no ;
r e t u r n maybe ;

}

enum is a custom variable type whose values are named

Using numbers instead is less readable and makes adding new
values in the middle very, very troublesome

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

enum #2

enum coo r d i n a t e {
x ,
y ,
z ,
coordCount

} ;

f l o a t p o s i t i o n [coordCount] ;
f o r (i n t i = 0 ; i < coordCount ; i++)

p o s i t i o n [i] = 0 ;
p o s i t i o n [x] = 12 ;

enum is very useful for naming elements in an array

An element after the last valid one is the quantity of valid ones
and can be used in iteration or array sizes

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

enum #3

enum f l a g {
i g n o r eP r o t e c t i o n = 1 ,
t r u n c a t e = 2 ,
backup = 4

} ;
vo i d c h ang eF i l e (cha r ∗ name , uns i gned i n t f l a g s) {

i f (f l a g s&i g n o r eP r o t e c t i o n) {/∗ . . . ∗/}
i f (f l a g s&t r u n c a t e) {/∗ . . . ∗/}
// . . .

}
// . . .
c h ang eF i l e (" f i l e . t x t " , i g n o r eP r o t e c t i o n | t r u n c a t e) ;

1 is 1 in binary, 2 is 10 in binary, 4 is 100 in binary
Operator & is bitwise and, so 110 & 011 yields 010, 011 & 001 yields 001
etc.
Operator | is bitwise or, so 110 | 011 yields 111, 010 | 001 yields 011 etc.
Together with enum, it can be used to pack 32 options into an int

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

Combinations

un ion en t r y {
char raw [2 4] ;
s t r u c t {

i n t i nd ex ;
i n t age ;
f l o a t impor tance ;
f l o a t c o o r d i n a t e s [3] ;

} ;
} ;
un ion en t r y a ;
f o r (i n t i = 0 ; i < 8 ; i++)

a . raw [i] = f g e t c (f i l e) ;
p r i n t f ("Read %i o f age %i \n" , a . index , a . age) ;

union and struct can be contained freely in each other
If the internal ones are not named, the elements are accessed as if they
weren't deeper

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

Combinations #2

enum sto redType {
maybeObject = 0 ,
n i l = 1 ,
c h a r a c t e r = 2 ,
s h o r t S t r i n g = 3 ,
i n t e g e r = 4 ,
f l o a t i n g = 5

} ;
un ion v a l u e {

s t r u c t o b j e c t ∗ ob j ;
s t r u c t {

un ion {
char asChar ;
cha r a s S t r i n g [4] ;
i n t a s I n t ;
f l o a t a sF l o a t ;

} ;
enum sto redType type ;

} ;
} ;

It may be used to store more types in one (but the program will need clues to know
which type is actually stored there)
This can be used to implement dynamically typed languages like Python
As long as struct object is at least 8 bytes large, its address will be a multiple of 8,
which does not include cases where the type �eld is 1-5

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

Shortening

s t r u c t th i s I sATe r r i b l yLongName { i n t a ; i n t b ; } ;
t y p ed e f s t r u c t th i s I sATe r r i b l yLongName longName ;
longName a ;

Some types are annoying long (this is particularly bad in C++),
sometimes it is annoying to write the struct pre�x everywhere, so
typedef can be used to shorten it

t y p ed e f s t r u c t {
i n t a ;
i n t b ;

} someStruct ;

It is not necessary to name the struct before renaming it

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

struct
union
enum
Combinations
Shortening
Exercises

Exercises

1 Write a program that reads a �le that contains �oats (in IEEE 754),
preceded by the an unsigned int that contains the quantity of these
numbers (example �le is available)

2 Write a program that reads pairs of numbers from a �le (a pair is always
on one line) and writes their sums into another �le (�le names are given
as command line arguments), all numbers in the read �le will be
formatted as follows:

0012 3242
2421 0921
9212 0424

Advanced:
1 Write a parser of a simple nested markup language (of your design or

choice) and save it in a recursive structure as follows:

s t r u c t b l o ck {
char ∗ t e x t ; // The con t en t s
s t r u c t b l o ck ∗ c h i l d r e n ; // An a r r a y
s t r u c t b l o ck ∗ pa r en t ; // I n whose c h i l d r e n i t i s

}

Ján Dugá£ek 4. Text parsing

Overview
User's input

Files
Custom variable types

Homework

Homework

Read the �le with table of function f (x) = (sin(x − c))a−x b

x+a
, always x

and f (x) on one line, and determine the coe�cients a, b and c

Advanced homework: write a parser that can parse and execute this
program, supporting 26 variables a - z that can contain both string and
number (the result should be 14)

a = 2
b = "2"
c = "3" + b
i f (c == 32)

d = (c / 2) − a
r e t u r n d

Challenge: support also some sort of while or for

Ján Dugá£ek 4. Text parsing

	Overview
	Overview

	User's input
	getchar()
	scanf()
	Exercises

	Files
	Reading files
	Writing files
	Exercises

	Custom variable types
	struct
	union
	enum
	Combinations
	Shortening
	Exercises

	Homework

