
Introduction
Basic changes

Objects
Homework

5. C++

Ján Dugá£ek

September 11, 2017

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

Table of Contents

1 Introduction

2 Basic changes
nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

3 Objects
struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class
friend
Exercises
std::string

4 Homework

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

Introduction

You know most of C now

Many trivial things are quite hard to do in C

C++ allows to do these things more practically

Practicality often comes at the cost of execution speed, but

not necessarily

To remember the keyword easier:

https://www.youtube.com/watch?v=c3zLTpDbyDc

Ján Dugá£ek 5. C++

https://www.youtube.com/watch?v=c3zLTpDbyDc

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

nullptr

f l o a t ∗ num = n u l l p t r ;

nullptr, is used in the same way as NULL, but it cannot be

accidentally assigned as number 0

It is good for avoiding mistakes

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

Shorter struct

s t r u c t s t u f f {
i n t i nd ex ;
cha r abbrev [4] ;

} ;
s t u f f a = {3 , " axe " } ;

You don't have the use the struct keyword before the type

name

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

Reference

vo i d i nc r ement (i n t& a) {
a++;

}
// . . .

i n t a = 2 ;
i n c r ement (a) ; // a IS a f f e c t e d
i n t& b = a ; // I n i t i a l i s a t i o n , not a s s i gnment

Reference is similar to pointer, but it's automatically dereferenced every
time it is used
It must be initialised when created and can never be changed (it would
change the variable it's initialised to)
Any change to the reference will change the variable it points to,
obtaining its address will obtain the address of the variable it points to
It is sometimes practical to have a pointer with limited abilities, but the
side e�ect of functions that accept reference arguments is not visible

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

Printing

#i n c l u d e <ios t r eam>
\ \ . . .
i n t a = 2 ;
s t d : : cout << "Value o f a i s " << a << std : : e nd l ;

More comfortable than printf(), but can't do all that

printf() can do

The printing functions called are chosen in compile time

according to the type of the variable

If you write std::end instead of std::endl, you will get a

1000 lines long error report (if you get an error report that

long, check for this error)

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

Including C libraries

C library functions are not useless in C++

While you may use #include <math.h>, it's better to omit

the .h su�x and add a c pre�x, writing #include <cmath>

If you include the C libraries that way, you don't have to use

-lmath compiler arguments and such

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

Functions with same names

vo i d i d e n t i f y (i n t a) {
s td : : cout << "A i s an i n t e g e r " << s td : : e nd l ;

}
vo i d i d e n t i f y (f l o a t a) {

s td : : cout << "A i s a f l o a t " << std : : e nd l ;
}

The functions have di�erent names after compilation,
containing also the types of arguments
The compiler chooses which function is called (C++ is still a
statically typed language, the types are �xed but can be
deduced by compiler)
Although float can be implicitly converted to int, the
compiler picks the function whose type is closer (or reports
ambiguity)

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

Allocating

i n t ∗ a = new i n t ; // A l l o c a t e s an i n t e g e r
i n t ∗ b = new i n t (2) ; // A l l o c a t e s an i n t e g e r and s e t s i t
i n t ∗ c = new i n t [2] ; // A l l o c a t e s an a r r a y o f 2 i n t e g e r s
d e l e t e a ; // I n s t e a d o f f r e e
d e l e t e [] c ; // Use t h i s to f r e e a r r a y s

You can still use malloc(), but it's less practical

delete what was allocated with new, free() what was

allocated with malloc()

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

nullptr

Shorter struct
Reference
Printing
Including C libraries
Functions with same names
Allocating
Exercises

Exercises

1 Pick a program from previous exercises and rewrite it to use the C++
habits

2 Pick another program from previous exercises and rewrite it to use the
C++ habits

Terminate �les with .cpp, compile C++ using g++ main.cpp �std=c++11 -o

main, arguments are the same.

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

struct expanded

s t r u c t coun t e r {
i n t count_ ;
vo i d i nc r ement () {

count_++;
}

} ;

coun t e r a = { 0 } ;
a . i n c r ement () ;

struct can have functions (called methods) that are attached to them
and can access the variables they contain as local variables
To avoid mistaking parts of the struct with local variables, they should
have a common pre�x or su�x
Methods are internally regular functions that use the pointer to the class
as �rst argument, they are not a part of the struct
Inside a method, 'this' is a pointer to the structJán Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

Constructors and destructors

s t r u c t po i n t e rGua rd {
i n t ∗ po in te r_ ;
po i n t e rGua rd (i n t ∗ p o i n t e r) : po in te r_ (p o i n t e r) { }
~po i n t e rGua rd () {

d e l e t e po in te r_ ;
}

} ;
vo i d doS tu f f {

i n t ∗ p o i n t e r = new i n t (4) ;
po i n t e rGua rd guard (p o i n t e r) ;

} // guard e x p i r e s , d e s t r u c t o r i s c a l l e d

Function with same name as the struct and no return value is a
constructor, it is called when it is created
Function named after the struct but with the ~pre�x and no arguments
is a destructor, it's called when the object is deleted or expires

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

Const correctness

s t r u c t cmplx {
f l o a t r e a l ;
f l o a t imag ;
f l o a t abs () con s t {

r e t u r n s q r t (r e a l ∗ r e a l + imag ∗ imag) ;
}

} ;

con s t cmplx a = {2 , 3} ;
f l o a t ab = a . abs () ;

Only methods declared as const may be called on objects declared as
const
Methods declared as const may not modify attributes (unless these
attributes have the mutable modi�er)

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

Operator overloading

s t r u c t coun t e r {
i n t count_ ;
coun t e r () : count_ (0) {}
vo i d op e r a t o r++(i n t unused) {

count_++;
}

} ;
coun t e r a ;
a++; // op e r a t o r++() w i thout argument would be f o r ++a

You can de�ne operations that can be done with the object using
operators

If the operations is not unary, the method accepts an argument that is
the other operand

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

Operator overloading #2

s t r u c t matr ix_3x3 {
f l o a t val_ [3] [3] ;
boo l o p e r a t o r== (matr ix_3x3& o the r) {

f o r (i n t i = 0 ; i < 3 ; i++)
f o r (i n t j = 0 ; j < 3 ; j++)

i f (val_ [i] [j] != o th e r . val_ [i] [j])
r e t u r n f a l s e ;

r e t u r n t r u e ;
}
vo i d op e r a t o r+= (matr ix_3x3& o the r) ;
matr ix_3x3 op e r a t o r ∗ (f l o a t m) ; // De f i ned e l s ewhe r e
matr ix_3x3 op e r a t o r ∗ (vector_3& v) ;
matr ix_3x3 op e r a t o r ∗ (matr ix_3x3& o the r) ;

} ;

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

Encapsulation

s t r u c t coun t e r {
p u b l i c :

c oun t e r () : count_ (0) {}
vo i d op e r a t o r++(i n t unused) { count_++; }
i n t getCount () { r e t u r n count_ ; }

p r i v a t e :
i n t count_ ;

} ;

To prevent mistakes, it is possible to make some content unavailable
unless accessed from the right place
Anything behind public: is available from everywhere, anything behind
private: is available only from methods of that object type and
anything behind protected: is available only for methods of that object
It can be circumvented by changing the type to something with the same
memory layout, but this is to prevent mistakes, not to prevent hacking

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

class

c l a s s coun t e r {
i n t count_ ;

p u b l i c :
c oun t e r () : count_ (0) {}
vo i d op e r a t o r++(i n t unused) { count_++; }
i n t getCount () { r e t u r n count_ ; }

} ;

In struct or union, everything is public until explicitly set, which is
consistent with C and used for smaller objects in C++

class is totally like struct, but it has everything private until a change
(everything private is quite useless)

The variable types of struct and class are called classes, initialised
variables in memory are called objects

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

friend

c l a s s coun t e r {
i n t count_ ;
f r i e n d vo i d inc rementCount (coun t e r& a) ;

} ;

v o i d inc rementCount (coun t e r& a) {
a . count_++;
i f (a . count_ % 10) {

s td : : cout << "Ten count s c a l l e d ! " << std : : e nd l ;
}

}

Any function or class declared as friend of some class, allowing it to
access all its member variables
Friendship is not mutual (even) in programming

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

Exercises

1 Write a complex class that represents complex numbers and de�ne
operators for usual operations with them

2 Write a class that acts like a str class, can be created from a char*
with a constructor, has methods for appending other str, char* or char
and obtaining its length (its content have to be extended if necessary)

3 Add to that class operators +, +=, ==, !=

Advanced:
1 Write classes matrix and vector that support operations +, - and *

between each other and float and can be set to any dimension according
to constructor arguments

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

struct expanded
Constructors and destructors
Const correctness
Operator overloading
Encapsulation
class

friend

Exercises
std::string

std::string

s t d : : s t r i n g a (" b l a ") ;
s t d : : s t r i n g b ("42−1") ;
s t d : : s t r i n g c = a + b ; // w r i t e s b la42−1 to c
a += c ; // appends c to a , r e s u l t i n g i n b l ab l a42 −1
a . append (" . co") ; // appends to a , r e s u l t i n g i n b l ab l a42 −1. co
a . push_back ('m') ; // appends a cha r a c t e r , b l ab l a42 −1.com
b = a . s u b s t r (a . f i n d (" b l a ") , 4) ; // p i c k s b l ab

std::string does most of the text things that is annoying to do with C

They are, however, often slower and not always practical

Use std::getline(std::cin, a); to read a line of input and save it
into string a

It needs to include string

Ján Dugá£ek 5. C++

Introduction
Basic changes

Objects
Homework

Homework

Write a class that describes a function given by the values of its elements
from 0 up to a value given in constructor (ideally a dynamically allocated
array), elements are accessed with [] like in array, must have a method
differentiate that replaces the array with its derivative (1 element
shorter, needs resize)

Advanced homework:
Your friend who is used to Python wants to use C++, but he is afraid of
the static typing. Create a class named var with size 8 bytes, that can
hold an integer, a �oat, a short string up to 7 characters, a pointer to a
string of any size (for longer strings) or a pointer to an array of these
variables (resizeable, expanded when writting behind end). Usual
arithmetic should apply to all types as it would if the types were known,
decided in runtime. See previous slides' section about union to see how
to do it.

enum type s : un s i gned char { // The i n t e r n a l t ype can be s e t
i s P o i n t e r = 0 ,
// . . .

Ján Dugá£ek 5. C++

	Introduction
	Basic changes
	nullptr
	Shorter struct
	Reference
	Printing
	Including C libraries
	Functions with same names
	Allocating
	Exercises

	Objects
	struct expanded
	Constructors and destructors
	Const correctness
	Operator overloading
	Encapsulation
	class
	friend
	Exercises
	std::string

	Homework

