
Templates
Complexity

STL containers
Cache miss
Homework

6. Templates and complexity

Ján Dugá£ek

September 12, 2017

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Table of Contents
1 Templates

Why?
Main usage
Other usage
Exercises

2 Complexity
Linked list
Big O notation
Exercises

3 STL containers
std::vector

std::list

std::map

std::unordered_map

Exercises

4 Cache miss
A bit of physics
Cache
Avoiding cache misses
Data structures and cache misses

5 Homework

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Why?
Main usage
Other usage
Exercises

Why to use templates?

s t r u c t po i n t e rGua rd {
i n t ∗ po in te r_ ;
po i n t e rGua rd (i n t ∗ p o i n t e r) : po in te r_ (p o i n t e r) { }
~po i n t e rGua rd () {

d e l e t e po in te r_ ;
}

} ;

The code above is not particularly useful, because it has to be

de�ned for each type it might contain

Any pointer can be converted to void*, but the delete needs

to know the exact type so that it would call proper destructors

(free() would work, but it would not call a destructor)

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Why?
Main usage
Other usage
Exercises

Main usage

t emp la t e <typename T>
s t r u c t po i n t e rGua rd {

T po in te r_ ;
po i n t e rGua rd (T p o i n t e r) : po in te r_ (p o i n t e r) { }
~po i n t e rGua rd () { d e l e t e po in te r_ ; }

} ;
vo i d doS tu f f {

po in te rGuard<i n t ∗> guard (new i n t (6)) ;
po in t e rGuard<doub l e∗> guard2 (new doub l e (3 . 1 4 1 5 2 6)) ;

}

pointerGuard is a template class, each instance is a di�erent
structure with di�erent functions as methods, created at
compile time
There is no performance impact
If the template argument is not a pointer, the destructor will
fail to compile

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Why?
Main usage
Other usage
Exercises

Other usage

Although the template arguments can be of the typename type, there are
more speci�c types of template arguments, like int that requires it to be
an integer (arithmetic can be done on it at compile time) or class that
requires it to be a class

t emp la t e <typename T, i n t s i z e >
s t r u c t a r r a y {

T con t en t s [s i z e] ;
T& ope r a t o r [] (i n t a t) {

i f (at>=0 && at<s i z e) r e t u r n con t en t s [a t] ;
r e t u r n con t en t s [0] ;

}
} ;
a r r ay<in t , 6> a r r ;

In this example, size is not a variable, but a constant used at compile
time

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Why?
Main usage
Other usage
Exercises

Other usage #2

Templates produce long and hard to comprehend error messages when
used wrongly

Templates can be used to do much more complex things, to the extent
that any algorithm can be programmed with templates to be executed at
compile time

This leads to all kinds of weirdness, i.e. the following erroneous is a
broken loop at compile time:

template<i n t n>
s t r u c t f i b o n a c c i
{

s t a t i c c on s t e xp r i n t v a l u e
= f i b o n a c c i <n−1>:: v a l u e + f i b o n a c c i <n−2>:: v a l u e ;

} ;
// Cons tant s f o r 1 s t and 2nd v a l u e s a r e not g i v en
// . . .
i n t r e s u l t = f i b o n a c c i <40>:: v a l u e ;

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Why?
Main usage
Other usage
Exercises

Exercises

1 Write a sharedPointer class that holds a pointer of any type, keeps
track of its copies and deletes the pointer when the last copy is destroyed

2 Write a expandableArray class that can dynamically reallocates an array
of objects of given type if it is �lled, needs operator[] and an append()
method

s t r u c t someth ing {
someth ing (con s t someth ing& a) { /∗ copy ing ∗/}
vo i d op e r a t o r=(cons t someth ing& a) { /∗ as s i gnment ∗/}

Advanced:
1 Write class deletablePointer that holds a pointer of any type, keeps

track of its copies and all its copies' target is set to nullptr when the
target is deleted

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Linked list
Big O notation
Exercises

Linked list

s t r u c t s e c t i o n {
s e c t i o n ∗ p r e v i o u s ;
s e c t i o n ∗ next ;
i n t v a l u e ;

} ;
s t r u c t l i n k e d L i s t {

s e c t i o n ∗ f i r s t ;
s e c t i o n ∗ l a s t ;

} ;

If we insert an element into the middle of an array, a large part of the
array is copied

If we save the array in a linked list, where each element is stored
elsewhere but contains pointers to next and previous elements, this
operation's duration does not depend on its size

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Linked list
Big O notation
Exercises

Big O notation

Inserting into the middle of an array of size n may require up to c · n
operations (where the whole array is copied), where c is some constant;
we mark this O(n) and call it linear complexity

Accessing an element in an array of size n requires c operations, where c
is some other constant; we mark this O(1) and call it constant complexity

Inserting into the middle of a linked list requires c operations, where c is
some constant (di�erent than the previous one); this is again O(1)
Accessing n-th element of a linked list requires c · n operations (it needs
to run through all previous ones to �nd it), where c is some constant; this
is again O(n)
The constants are clearly di�erent, linked list is clearly slower, but if the
amount of data is huge, the one with better complexity is better (so if we
need a lot of insertions, we have to use the linked list)

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Linked list
Big O notation
Exercises

Big O notation #2

An algorithm that sorts an array of size n by running n times through it
and swapping couples of elements in the wrong order (called bubblesort)
needs c · n2 operations to sort the array, so its complexity is O(n2), we
call it quadratic complexity

An algorithm that �nds a number in a sorted array of n numbers can do
it by checking if the middle element is greater and lesser than the number
sought, focus on the half where the element is, compares it with the
middle of this half, selects the quarter where it is and so on does c · ln(n)
operations to �nd it, so its complexity is O(ln(n)), we call it logarithmic
complexity

An algorithm that learns the prime divisors of number of size n bits by
trying to divide it by all numbers up to

√
2n needs (if unlucky) c1 · 2

√
c2·n

operations to �nd it, so its complexity is O(en) and we call it exponential
complexity

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Linked list
Big O notation
Exercises

Big O notation #3

When using the big O notation, we care only about how fast the value
increases when n is su�ciently large, regardless of constants or slower
increasing parts

The time needed by any two algorithms' marked as O(n) to work through
data of size n di�ers by a non-zero, non-in�nity factor if n is large enough

Therefore O(n) = O(n + 10000) (the constant does not matter if n is

large enough), O(n) = O(10000n) (lim
n→∞

10000n

n
= constant, but we

would usually prefer the �rst algorithm), O(n) = O(n + ln n) (if n is large

enough, the linear part is too small because lim
n→∞

n + ln n

n
= 1)

If the time depends on more values, for example n and m, both are in the
notation, for example O(m + ln n) and its writing is not reduced (in this
case, n may be way larger than m)

In reality, sizes can be small, so time 2n+ 5 may be better than time 200,
although �rst is O(n) and the other is O(1)

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

Linked list
Big O notation
Exercises

Exercises

1 Find a way to sort an array with complexity only O(n · log n) (just �nd a
way, writing the code would take long)

2 Find a way to store data in a way that accessing a given element would
have complexity O(log n) and adding an element would also have
O(log n) complexity (just think of a way)

Advanced:
1 Find a way to sort an array of elements numbered from 0 to n (not

necessarily all are present) with complexity O(n)
2 Prove that the complexity of an operations that appends at the end of an

array, reallocating it to a larger one (copying all previous elements) when
it's full, is O(1) in an average case (it's called ammortised complexity,
one addition may need c · n operations, but if we average enough of
them, it's di�erent)

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

std::vector

std::list

std::map

std::unordered_map

Exercises

std::vector

std::vector is a class that maintains an expanding array

Its elements are accessed with operator [] and placed at the end of the
array with its push_back() method

Do not get pointers to its elements, the array may be reallocated,
rendering all pointers invalid

s t d : : v e c to r<in t > vec ;
f o r (i n t i = 1 ; i < 10 ; i++)

vec . push_back (42 / i) ;
vec [3] = 0 ;
uns i gned i n t s i z e = vec . s i z e () ;

You need to include vector to use this
This data structure is called vector in computer science

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

std::vector

std::list

std::map

std::unordered_map

Exercises

std::list

Data is stored in a linked list, allows adding or removing elements
anywhere in constant time, but accessing an element at given index needs
linear time
Elements are accessed using an iterator, which holds information about
the element
You can access iterator's elemens using the dereference operator

s t d : : l i s t <in t > l i s t ;
f o r (i n t i = 1 ; i < 10 ; i++)

l i s t . push_back (42 / i) ;
f o r (s t d : : l i s t <in t >: : i t e r a t o r i t = l i s t . b eg i n () ;

i t != l i s t . end () ;)
i f (∗ i t == 3) i t = l i s t . e r a s e (i t) ;
e l s e ++i t ;

l i s t . i n s e r t (l i s t . b eg i n () , 3) ;

You need to include list to use this

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

std::vector

std::list

std::map

std::unordered_map

Exercises

std::map

Data is stored in a red-black tree, allows accessing elements in logarithmic
time, adding or removing elements anywhere also in logarithmic time
Elements and indexes can be read using an iterator (they are sorted by
their indexes), but the main usage is accessing via operator [] (can be
used to construct new elements as well)
The index does not have to be an integer, it can be anything that can be
compared

s td : : map<s td : : s t r i n g , i n t > a r r a y ;
a r r a y [" h i "] = 3 ;
a r r a y [" zaphod"] = 4 ;
a r r a y [" f o r d "] = a r r a y [" zaphod"] − 1 ;
f o r (s t d : : map<s td : : s t r i n g , i n t >: : i t e r a t o r i t = a r r a y . beg in () ;

i t != a r r a y . end () ; ++i t)
s t d : : cout << i t−>f i r s t << "="<< i t−>second << std : : e nd l ;

You need to include map to use this
std::multimap can contain more elements with the same index, but
access is not so simple

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

std::vector

std::list

std::map

std::unordered_map

Exercises

std::unordered_map

Data is stored in a hash table, allows accessing, adding and removing
elements in constant time
Elements are accessed and created via operator [], elements and
indexes can be read using an iterator (they are not stored in any
speci�c order)
The indexes must be convertible to integers with as little relation to them
as possible using a std::hash<theType> function, so it's a bit trickier to
get working with custom types
This is called dictionary in many other programming languages

s t d : : unordered_map<s td : : s t r i n g , i n t > ha s h t a b l e ;
h a s h t a b l e [" B r e i v i k "] = 70 ;
h a s h t a b l e ["Osama"] = 3000 + ha s h t a b l e [" B r e i v i k "] ;
h a s h t a b l e [" S t a l i n "] = ha s h t a b l e ["Osama"] ∗ 6666 ;
i f (h a s h t a b l e . f i n d ("Dugi ") == ha sh t a b l e . end ())

s t d : : cout << "Dugi i s not a murdere r ! " << s td : : e nd l ;

You need to include unordered_map to use this
std::unordered_multimap can contain more elements with the same
index, but access is not so simple

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

std::vector

std::list

std::map

std::unordered_map

Exercises

Exercises

1 Rewrite an existing exercise that uses an expanding array to use
std::vector

2 Write a program that sorts a certain number of randomly generated
elements using bubblesort (array is passed n times, always swapping
adjacent out-of-order elements) and using std::map to sort them,
compare the time it takes

#i n c l u d e <ctime>
// . . .
t ime_t b e f o r e = t ime (0) ;
f o r (i n t i = 0 ; i < 10000; i++) {}
s td : : cout << "Took " << (t ime (0) − b e f o r e) << s td : : e nd l ;

Advanced:
1 Write a filter() function that reads through a std::list, erasing all

elements lesser than a number given as another argument
2 Study the order in which are numbers stored in a std::unordered_map

indexed by numbers, is it a good way to order them?

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

A bit of physics
Cache
Avoiding cache misses
Data structures and cache misses

A bit of physics

The computer's memory is large enough for many purposes (4 GiB means
a milliard of integers), but its distance from the processor needs a bit of
thought

The distance between CPU and RAM is roughly 10 cm, so the time
needed to travel there is roughly at least 3.10−8s (assuming the speed of
light, which is not the case)

If the processor is running at 2 GHz, its cycle takes 2.10−9s (and it does
in average 7 operations per cycle!)

In practice, it can be assumed that it takes as much as time as 150 cycles

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

A bit of physics
Cache
Avoiding cache misses
Data structures and cache misses

Cache

To deal with this issue, the processor has its own small memory called
cache that contains all recently accessed data along with their
surroundings

Cache has usually several levels, each larger and with greater access time,
the smallest is about 64 KiB, the largest 128 MiB

Because this is still imperfect, most processors have a feature called
hyper-threading, a CPU-like structure that does other stu� while it is
waiting for data to arrive into cache

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

A bit of physics
Cache
Avoiding cache misses
Data structures and cache misses

Avoiding cache misses

Even with hyper-threading, the processor would mostly wait for data
rather than do work if the program had a cache miss every dozen
operations

There is no way to tell the CPU to cache some area and in most cases, it
would not be known ahead anyway

The program should therefore have the data it needs at similar time
stored at similar location
Automatic local variables are stored close to each other and some of
them are always accessed (current function's arguments), so they are fast

Accessing a dynamically stored array may cause a cache miss, but once
it's accessed, all the elements around the accessed element are cached
and can be quickly accessed

Dynamically allocated pieces of data spread on many locations (depending
on what was free at allocation time) often incur a cache miss per access

Locations accessed through many consecutive pointer jumps can cause
several cache misses per access

The main bene�t of using char and short int instead of int is that
they take less space and more of them can be cached simultaneously

Ján Dugá£ek 6. Templates and complexity

Templates
Complexity

STL containers
Cache miss
Homework

A bit of physics
Cache
Avoiding cache misses
Data structures and cache misses

Data structures and cache misses

A regular array is the fastest

std::vector is the best solution for most cases, because its contents are
coherent (and thus can be the best even if you need to insert into its
middle using an iterator)

If std::vector is not good, usually the best solution is
std::unordered_map because it can access similarly to vector after
calculating its address

std::list often causes a cache miss per iteration, so it's rather slow and
should be used only in cases where the lower complexities are absolutely
necessary due to the sizes of arrays (O(n) vs. O(200))
std::map often causes several cache misses per each element access and
iteration, so it should be used only if absolutely necessary

Note that objects dynamically allocated at similar time (for example one
after another) will usually be given addresses one after another, so cache
misses will not always happen as much as expected

More info here: http://ithare.com/
c-performance-common-wisdoms-and-common-wisdoms/

Ján Dugá£ek 6. Templates and complexity

http://ithare.com/c-performance-common-wisdoms-and-common-wisdoms/
http://ithare.com/c-performance-common-wisdoms-and-common-wisdoms/

Templates
Complexity

STL containers
Cache miss
Homework

Homework

Write a class that works like an XML tag, contains several named
attributes, other tags or text, with methods to add new attributes and
tags inside, access their contents and remove them and also has a
method to write the tag along with the tags and attributes it contains
into a document; use e�cient STL containers

Challenge: Give it also a constructor that can be used to parse an XML
document
About XML: https://en.wikipedia.org/wiki/XML

Advanced homework:
Same as the regular one, but give it also a constructor that can be used
to parse an XML document and deal with the few characters that need to
be escaped

Ján Dugá£ek 6. Templates and complexity

https://en.wikipedia.org/wiki/XML

	Templates
	Why?
	Main usage
	Other usage
	Exercises

	Complexity
	Linked list
	Big O notation
	Exercises

	STL containers
	std::vector
	std::list
	std::map
	std::unordered_map
	Exercises

	Cache miss
	A bit of physics
	Cache
	Avoiding cache misses
	Data structures and cache misses

	Homework

