
2D Graphics
Inheritance
Homework

7. Inheritance, 2D graphics

Ján Dugá£ek

September 20, 2017

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Table of Contents

1 2D Graphics
How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

2 Inheritance
Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

3 Homework

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

2D Graphics: How does it work?

An image is typically compressed using a long and complicated

algorithm that should better be avoided using a library like

FreeImage

It is planned that C++ would be added io2d to deal with this,

but the proposal is not �nished yet

The function to read and save a .bmp �le is quite simple and

available

An opened image is a 3D array of type unsigned char (or

uint8_t) with dimensions height, width and colour (2D

without colour if it's greyscale)

All operations are done on the array until it's saved and this

array is the same for all libraries (though it might be �ipped)

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

A black image

s t r u c t image300x200 {
uns i gned char [3 0 0] [2 0 0] [3] ;
un s i gned char& at (i n t x , i n t y , i n t c o l) {

r e t u r n char [x] [y] [c o l] ;
}

}
image300x200 p i c ;
f o r (i n t i = 0 ; i < 300 ; i++)

f o r (i n t j = 0 ; j < 200 ; j++)
f o r (i n t k = 0 ; k < 3 ; k++)

p i c . a t (i , j , k) = 0 ;

To make the image black, we set all values to 0
Arrays of higher dimension are not very practical when passed as function
arguments (a 3D array of unsigned char is not the same as unsigned
char***), so it's wrapped in a struct
Images are large objects, large images might not �t on stack and it's
better to have them dynamically allocated

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

A rectangle

// p i c i s as w r i t t e n on p r e v i o u s s l i d e
f o r (i n t i = 100 ; i < 200 ; i++)

f o r (i n t j = 66 ; j < 133 ; j++)
p i c . a t (i , j , 1) = 255 ;

Drawing a rectangle is as simple as locating the pixels whose

colour will be changed

The colour will most likely be green, but it may depend on

implementation

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

A line

// p i c i s as w r i t t e n on p r e v i o u s s l i d e
auto l i n e = [&] (i n t x1 , i n t x2 , i n t y1 , i n t y2) {

i n t l e n g t h = s q r t ((x2 − x1) ∗ (x2 − x1)
+ (y2 − y1) ∗ (y2 − y1)) ;

f l o a t x I n c r = (x2 − x1) / l e n g t h ;
f l o a t y I n c r = (y2 − y1) / l e n g t h ;
f o r (i n t i = 0 ; i <= l e ng t h ; i++)

p i c . a t (x1 + x I n c r ∗ i ,
y1 + y I n c r ∗ i , 2) = 255 ;

}

This is not the most e�cient algorithm, by the way

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

Fast square root

f l o a t f s q r t (f l o a t x) {
f l o a t x h a l f = 0 .5 f ∗ x ;
i n t i = ∗(i n t ∗)&x ;
i = 0 x5f375a86 − (i >> 1) ;
x = ∗(f l o a t ∗)& i ;
x = 1 / (x ∗ (1 . 5 f − x h a l f ∗ x ∗ x)) ;
r e t u r n x ;

}

This very fast algorithm computes the square root with a decent
precision (better than 1%), the imprecision is not visible to naked
eye
Don't ask why it works or how it works
It was invented by Id Software for game Quake for normalising
vectors (apparent colour of a surface is the light intensity multiplied
by the surface's colour multiplied by the normalised dot product of
the vector of incident light and normal of the surface)

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

Circle

// p i c i s as w r i t t e n on p r e v i o u s s l i d e
auto c i r c l e = [&] (i n t x , i n t y , i n t r a d i u s) {

f o r (i n t i = 0 ; i < r a d i u s ; i++) {
i n t width = f s q r t (r a d i u s ∗ r a d i u s − i ∗ i) ;
f o r (i n t j = −width ; j <= width ; j++) {

p i c . a t (i + x , j , 0) = 255 ;
p i c . a t (i − x , j , 0) = 255 ;

}
}

}

This algorithm uses the circle equation f (x) =
√
r2 − x2

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

How does it work?
A black image
A rectangle
A line
Fast square root
Circle
Exercises

Exercises

1 Use the �le available with these slides to create an image class
that has methods for drawing of dots, lines, rectangles and
circles

2 Add methods for drawing ellipses, arrows, empty circles and
empty triangles

3 Challenge: Add a method to draw a �lled triangle

Advanced:
1 Use the �le available with these slides to create a program that

reads a �le containing data in two columns, x and f (x) and
draws a graph of the function into a picture

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Inheritance: Why?

s t r u c t a {
i n t v a l ;
v o i d i nc r ement () { v a l++; }

} ;
s t r u c t b {

i n t v a l ;
i n t m u l t i p l i e r ;
i n t o p e r a t o r ∗(i n t n) { r e t u r n m u l t i p l i e r ∗ n ; }

} ;
b∗ o r i g = new b ;
a∗ changed = (a ∗) o r i g ;

If we convert b to a, nothing bad happens, the increment()
method works as it should, the multiplier �eld is not
changed
If b had some dynamically allocated stu�, it would leak
because its destructor would not be called

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Inheritance: Why? #2

s t r u c t a {
i n t v a l ;

} ;
s t r u c t b {

f l o a t v a l ;
} ;
s t r u c t c {

i n t asA ;
f l o a t asB ;

} ;
c∗ o r i g = new c ;
a∗ changed = (a ∗) o r i g ;
b∗ changed2 = (b∗)& o r i g . asB ;

Now it gets even more impractical

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Inheritance

s t r u c t a {
i n t v a l ;
v o i d i nc r ement () { v a l++; }

} ;
s t r u c t b : p u b l i c a {

i n t m u l t i p l i e r ;
i n t o p e r a t o r ∗(i n t n) { r e t u r n m u l t i p l i e r ∗ n ; }

} ;
b∗ o r i g = new b ;
a∗ changed = o r i g ;

Inheritance is a way to expand a class to a new one that has
added functionality

In this case, a called parent class and b is called child class

Conversion to parent class is done implicitly

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Inheritance #2

Inheritance is mostly public, but there is also private
inheritance, that makes all parent classes' contents private

Child classes can't access their parents classes' private
methods and attributes (they are a di�erent class), but can
access their protected members (they are the same object)

Friend methods and classes are not inherited
Conversion from child class to parent class is not checked in
any way and may cause problems if the new type is incorrect

b∗ o r i g = new b ;
a∗ changed = o r i g ;
b∗ r e c o n s t r u c t e d = s t a t i c_ca s t <b∗>(changed) ;

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Virtual methods

s t r u c t a {
i n t v a l ;
v o i d i nc r ement () { v a l++; }

} ;
s t r u c t b : p u b l i c a {

vo i d i nc r ement () { v a l += 2 ; }
} ;
b o r i g ;
a& changed = o r i g ;
changed . i n c r ement () ;

In this case, the compiler calls a's method because the type
it's looking through is a

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Virtual methods #2

s t r u c t a {
i n t v a l ;
v i r t u a l v o i d i nc r ement () { v a l++; }

} ;
s t r u c t b : p u b l i c a {

v i r t u a l v o i d i nc r ement () { v a l += 2 ; }
} ;
b o r i g ;
a& changed = o r i g ;
changed . i n c r ement () ;

In this case, the compiler calls b's method because it checks the underlying type
in runtime and learns it's b
Virtual function calls are inherently slower because they require additional
checks and can't be inlined
It allows us to create a child class from an existing class and use an existing
function on it that will call our code
Note: it's not necessary to declare the child's method as virtual, but it makes
the code clearer

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Pure virtual methods

s t r u c t a {
i n t v a l ;
v i r t u a l v o i d i nc r ement () = 0 ;

} ;
s t r u c t b : p u b l i c a {

v i r t u a l v o i d i nc r ement () { v a l += 2 ; }
} ;

In this case, class a does not even have a de�nition of the
virtual method, so it's called pure virtual

Class a is called abstract and cannot be created, only other
types can be changed to it; it is only a way to use multiple
classes by the same code

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Constructors and destructors

s t r u c t a {
i n t v a l ;
a (i n t s e t) : v a l (s e t) {}
v i r t u a l ~a () { v a l = 0 ; } // d e s t r o y the e v i d en c e

} ;
s t r u c t b : p u b l i c a {

i n t v a l 2 ;
b (i n t se t1 , i n t s e t 2) : a (s e t 1) , v a l 2 (s e t 2) {}
v i r t u a l ~b () { v a l = 0 ; v a l 2 = 0 ; }

} ;

Child classes' constructors may call parent classes'
constructors to construct the parent class (is mandatory if the
parent class has no default constructor)

We need to call the right destructor, so all destructors must

be virtual if inheritance is used

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Why?
Inheritance
Virtual methods
Pure virtual methods
Constructors and destructors
Exercises

Exercises

1 Create a ball class that has its direction, speed and weight as attributes,
a bigBall class that has all the properties of ball, but also size and
aerial friction coe�cient

2 Write a program that calculates the path of thrown balls, acting
di�erently if the ball is small enough to neglect the aerial friction or not

Advanced:
1 Create a particle class that has its direction, speed and size as

attributes, an atom class that has all the properties of particle, but also
mass and internal energy and a photon class that has all the properties of
particle, but also wavelength

2 Write a program that simulates interaction of thousands of atoms and
photons in a cube limited by mirror walls, making use of inheritance
(neglect photon momentum, assume that atoms can absorb anything and
will radiate it out into a random direction after some time)

Ján Dugá£ek 7. Inheritance, 2D graphics

2D Graphics
Inheritance
Homework

Homework

Write a library for manipulating images; its main object is image, it
can contain other images, squares, circles and lines, all at any
position; squares, circles and lines also have colours besides their
geometric properties; it must have a method to create an image of
all the content on it (and save it)

Use inheritance, I recommend using a class abstractShape
(attributes position, scale,) that has subclasses shape and image,
shape has further subclasses square, circle and line

Advanced homework:
Same as the regular one, but implement also a triangle class, add
scaling to image and transparency to all

You can also add functionality to delete all shapes whose container
was deleted

Ján Dugá£ek 7. Inheritance, 2D graphics

	2D Graphics
	How does it work?
	A black image
	A rectangle
	A line
	Fast square root
	Circle
	Exercises

	Inheritance
	Why?
	Inheritance
	Virtual methods
	Pure virtual methods
	Constructors and destructors
	Exercises

	Homework

