
Smart pointers
Inheritance

Others
Homework

8. Other useful things

Ján Dugá£ek

September 21, 2017

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Table of Contents
1 Smart pointers

What are they?
std::shared_ptr
std::unique_ptr
A small problem
std::weak_ptr
Exercises

2 Inheritance
Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

3 Others
Namespaces
Streams
auto
Function pointers
Lambda functions
std::pair
Exceptions

4 Homework

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

Smart pointers: What are they?

It is very easy to forget to delete some objects

There are occasions where the program must decide when to

delete the object in run time

Smart pointers solve this with minimal time penalty

Code with smart pointers is longer if typedef is not used

wildly

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

std::shared_ptr

std::shared_ptr is a template class that holds a pointer that will be
deleted when the last of its copies expires

This is for cases where the pointer is copied on various places and there's
no way of telling which one will hold it last

There is a performance impact when creating, copying and destroying (it
needs to keep track of its quantity), but dereferencing itself has no
performance impact as the function call will be inlined by the compiler

s t d : : shared_ptr<in t > a = s td : : make_shared<in t >(4) ;
s t d : : shared_ptr<in t > b = a ;
∗a = 5 ;
i f (∗b == 5)

Its usage is very similar to raw pointers, but its creation is slightly altered

You need to include memory before using smart pointers

Uninitialised smart pointer is nullptr

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

std::unique_ptr

std::unique_ptr is a template class that holds a pointer
that will be deleted when the class expires
The pointer is not to be copied, it's only meant to prevent you
from forgetting to call the destructor
There is no performance impact, because the destructor will
be inlined during compilation

s t d : : unique_ptr<in t > a = s td : : make_unique<in t >(4) ;
∗a = 5 ;
i f (a) ∗a = 6 ;

Its usage is very similar to raw pointers, but its copying is
restricted
Its method reset() can be used to delete the contents (if not
null) and replace it with new contents, its method swap() can
be used to swap its contents with another std::unique_ptr

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

A small problem

s t r u c t a {
s td : : shared_ptr<a> p ;

} ;
s t d : : shared_ptr<a> x = s td : : make_shared<a>() ;
s t d : : shared_ptr<a> y = s td : : make_shared<a>() ;
x−>p = y ;
y−>p = x ;

In this case, both x and y are not deallocated, because x holds
one copy of pointer to y and y holds one copy of pointer to x; you
get a memory leak despite using smart pointers

This can be dealt with something that checks the reachability of
memory blocks and deletes what is unreachable, but it would lead
to unwanted deletions if pointer arithmetic was used (but it's used
in languages that don't allow pointer arithmetic, like Java)

In C++, you have to explicitly declare the order of dependence

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

std::weak_ptr

std::weak_ptr is a copy of a shared pointer, but does not increase the reference
count, it has to be converted to a (local variable) shared pointer before any use

s t r u c t a {
s td : : shared_ptr p ;
i n t v a l u e ;

} ;
s t r u c t b {

s td : : weak_ptr<a> p ;
} ;
s t d : : shared_ptr x = s td : : make_shared() ;
s t d : : shared_ptr<a> y = s td : : make_shared<a>() ;
x−>p = y ;
y−>p = x ;
x−>p . l o c k ()−>va l u e = 2 ;

Its method expired() checks if the contents it points to has been deallocated
or not

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

Exercises

1 Change your last homework (about XML) to use smart pointers

Reminder:

t y p ed e f s t d : : shared_ptr<s td : : s t r i n g > s t r P t r ;
t y p ed e f s t d : : make_shared<s td : : s t r i n g > mkStrPtr ;
// . . .
s t r P t r s t r = mkStrPtr ("This i s s h o r t e r ! ") ;

Note:
If you have not done your last homework, pick some other exercise that
you have done and has a lot of dynamic allocation

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

Multiple �les

// squa r e . h
f l o a t squa r e (f l o a t) ; // De c l a r a t i o n

// squa r e . cpp
f l o a t squa r e (f l o a t x) { // D e f i n i t i o n

r e t u r n x ∗ x ;
}
// t e s s e r a c t . cpp
#i n c l u d e " squa r e . h"
f l o a t t e s s e r a c t (f l o a t x) {

r e t u r n squa r e (squa r e (x)) ;
}

The de�nition may be in another �le, it can be used as long as its
declaration is available
This must be compiled as g++ tesseract.cpp square.cpp
�std=c++11 -o tesseract (headers are not listed there)

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

Multiple include

We don't want one �le to be included more than once, if 20 headers
include themselves a header with a common function (like sqrt()), it will
be compiled 20 times, possibly resulting in multiple de�nition

The usual way of preventing this is to check if a macro is present, if not,
declare it and include the contents

#i f n d e f SQUARE_H
#de f i n e SQUARE_H
f l o a t squa r e (f l o a t) ;
// Ev e r y t h i n g e l s e he r e
#e n d i f

#ifdef, #ifndef, #else and #endif decide which parts of the code are
ignored when loading, it can also be used to add some debugging checks
that can be easily disabled

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

Separate compilation

If the program is large, all the compilation data would not �t into RAM
and recompiling the whole thing from scratch after every little change
would become very time-consuming
The product of compilation does not have to be an executable �le, it may
be an object �le (.o a�x) and these object �les are linked into an
executable when all are done
It's quite annoying to do manually, so it's usually done by make�le
scripts, here is a simple example (it compiles all .cpp �les in its folder)
Initialise it with cmake . and run it with make -j3 (use another number
for a di�erent number of CPU cores to use)

p r o j e c t (myAwesomeProject)
cmake_minimum_required (VERSION 2 . 8)
aux_sou rce_d i r e c to r y (. SRC_LIST)
s e t (CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} −s t d=c++14 −O3 −g")
add_executab le (${PROJECT_NAME} ${SRC_LIST})
i n c l u d e_ d i r e c t o r i e s (${GLIB_PKG_INCLUDE_DIRS})
t a r g e t_ l i n k_ l i b r a r i e s (${PROJECT_NAME} −pth read)

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

Performance considerations

If a function is compiled and placed in di�erent �le, it cannot be inlined
and the function call will really be a function call

This is not a problem with larger functions where inlining would bloat the
code and cause more cache misses in executed code
If the function is short and does not require including large headers that
slow down compilation too much, it makes sense to de�ne it in the header

c l a s s bam {
i n t bom ;
i n l i n e i n t getBom () { r e t u r n bom ; }
i n l i n e vo i d op e r a t o r++() { bom++; }
i n l i n e bam() : bom(0) {}

} ;

Functions declared in a header would be compiled multiple times witch
each �le that includes it, so the inline modi�er must be used to make
the compiler take care of it

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

What are they?
std::shared_ptr

std::unique_ptr

A small problem
std::weak_ptr

Exercises

Exercises

1 Include your last homework (about XML) into a simple program that uses
XML to save some data, but is written in di�erent �le(s) than your XML
library

Note:
If you have not done your last homework, pick some other exercise that
you have done and reminds of a library

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

Namespaces

Namespace is like a folder for functions, classes and such, to allow entities with
the same name to be used in the same �le without problems

namespace e x p e c t a t i o n s {
con s t i n t e x p e c t e dS i z e = 20 ;

}
// . . .
f o r (i n t i = 0 ; i < e x p e c t a t i o n s : : e x p e c t e dS i z e ; i++) {

Various entities can be set into one namespace at di�erent locations
We can omit the namespace if we set it

u s i n g e x p e c t a t i o n s : : e x p e c t e dS i z e ;
// . . .
f o r (i n t i = 0 ; i < e xp e c t e dS i z e ; i++) {

We can enable omitting an entire namespace as well

u s i n g namespace s td ;
// . . .
shared_ptr<s t r i n g > a = make_shared<s t r i n g >("Hi t h e r e ") ;

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

Streams

Stream is a generalised interface for reading and writing text

Streams for reading inherit from std::istream and streams for writing
inherit from std::ostream
Stream for program input is std::cin, for program output are std::cout
and std::cerr, for �les are std::ifstream and std::ofstream (input and
output respectively), for writing into string is std::stringstream,
headers are iostream, fstream and sstream respectively

s t d : : o f s t r e am f s (" the_rep l y . t x t " , s t d : : o f s t r eam : : out) ;
i f (! f s . good ()) r e t u r n ; // Check i f i t d idn ' t b reak ;
f s << "The f i l e was w r i t t e n . " << std : : e nd l ;
f s . c l o s e () ;
s t d : : s t r i n g s t r e am s s ;
s s << "We have found " << bod i e s << " bod i e s . " << s td : : e nd l ;
s t d : : s t r i n g got = s s . s t r () ;

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

auto

Sometimes, the type name is terribly long, but easy to
determine from the type assigned

In this case, the type name can be replaced with auto
that derives it from the return type when compiling

It's not dynamic typing, the type is known at compile
time, it's just deduced when reading

s t d : : unordered_map<s td : : s t r i n g , s t d : : v e c to r<s td : : s t r i n g >> m;
// . . .
f o r (auto i t = m. beg in () ; i t != m. end () ; ++i t) {

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

Function pointers

A function is, in assembly, identi�ed by its location in program memory

Although we cannot read nor write into program memory, we can choose
which part to execute

The function types must be respected, because we still need to know
what arguments to give it so that it would work

f l o a t (∗ s q r t P t r) (f l o a t) = s q r t ;
f l o a t a = s q r t P t r (4) ;

This works also in C
Function pointers can be assigned to class members and used as a
pseudo-method that can be changed (this also works in C), but occupies
space in memory and has no access to member variables

It's often used to call a function that would call a given function on its
arguments (i.e. a sorting function that accepts a container and a function
that compares two elements)

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

Lambda functions

Lambda function is a function declared within a function that can use
variables that surround it
It's commonly used to avoid repeating parts of code without de�ning a
function that needs to be placed elsewhere and may need a load of
arguments; lambdas are very easily inlined
It may be used instead of a function pointer (note that it's not a function
pointer itself), with the bene�t of keeping its surrounding variables with
itself

f l o a t power = 0 . 5 ;
s t d : : f u n c t i o n <f l o a t (f l o a t)> roo t = [&] (f l o a t x) −> f l o a t {

r e t u r n pow(x , power) ;
} ;
f l o a t s q r t 3 = roo t (3) ;

The part between square brackets is called capture area
[] means that no variables are accessible, [&] means all are taken by
reference and [=] means that all are copied (copying is necessary if the
lambda's lifetime exceeds the variables' lifetime)

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

Lambda functions #2

Variables not mentioned in the lambda code are not
copied or referenced or anything

std::function can contain both a function and a
lambda
Because the lambda's type is rather complicated and can
be easily determined from the assignment part, it's useful
to use auto (its main disadvantage is that it prevents the
lambda function from calling itself)

If an argument to lambda has type auto, the lambda is a
template

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

std::pair

Sometimes, it's practical to wrap two variables into a
single variable without creating a custom class for it

auto d i v i d e = [] (i n t x , i n t y) −> std : : p a i r <f l o a t , i n t > {
r e t u r n s td : : make_pair ((f l o a t) x / (f l o a t) y , x / y) ;

} ;
s t d : : p a i r <f l o a t , i n t > got = d i v i d e (3 , 4) ;
s t d : : cout << " E i t h e r " << got . second << " or " << got . f i r s t ;

std::map and std::unordered_map have a std::pair
of the value and its index in their iterators
It's very much like:

template<typename T1 , typename T2> s t r u c t p a i r {
T1 f i r s t ;
T2 second ;

} ;

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

Exceptions

Sometimes a �le fails to open, sometimes a �le has some errors,
sometimes a user interrupts a process, sometimes something is set badly
and the program needs to be ready for it, a crash would lead to unsaved
data being lost
It can be done with a lot of if checks, but they might be needed in such
quantities that it would slow down the program and be very tricky to code
So, if an exception is thrown, the execution will leave all blocks until a
proper catch block is found

i n t ∗∗ readData (s td : : s t r i n g f i l e) {
s td : : i f s t r e am i n (f i l e) ;
i f (! i n . good ()) throw (s td : : s t r i n g (" Sh i t happened")) ;

// . . .
t r y {

data = readData ("/dev / n u l l ") ;
} ca tch (s t d : : s t r i n g happened) {

s td : : cout << "Problem : " << happened << std : : e nd l ;
}

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Why?
Multiple �les
Multiple include
Separate compilation
Performance considerations
Exercises

Exceptions #2

The try block takes a lot of memory, exception throwing is slow, but as long as
the number of try block is low and no exception is thrown, the performance
impact is small compared to the performance impact of a lot of checks

Exceptions should therefore be used only if the behaviour is exceptional

Some parts of memory may not be deallocated because the delete part was not
reached, leading to memory leaks, it can be avoided with a unique pointer
(destructors are called)

If new fails to allocate memory (full RAM, for example), exception of type
std::bad_alloc is thrown

Standard exceptions should be child classes of std::exception that has a
what() method that returns a string that was used in its constructor, typical
exception types used are std::logic_error (to detect bad programming) and
std::runtime_error (to report errors that happen due to bad circumstances)

There may be specialised catch blocks for each exception type, with child types
before parent classes (parent catch would otherwise catch the child exception);
catch(...) catches everything, but because it does not know the type, there is
nothing it can report except that an exception was thrown

Ján Dugá£ek 8. Other useful things

Smart pointers
Inheritance

Others
Homework

Namespaces
Streams
auto

Function pointers
Lambda functions
std::pair

Exceptions

Homework

Create a math library (with header and code parts) that has real
numbers, complex numbers and quaternions (complex number is
real number with some extras, quaternion is a complex number with
some extras) that use inheritance for common operations like
addition and subtraction (you can use real number addition to add a
real number to a complex number), supports also multiplication and
throws exceptions if something is done badly (assigning a complex
number to a real number if the complex number has an imaginary
part)

Write a few functions that use it in a di�erent �le
About quaternions:
https://en.wikipedia.org/wiki/Quaternion

Advanced homework:
Same as the regular one, but implement also inverse, division and
square root (selecting only one possible result if more are possible)

Ján Dugá£ek 8. Other useful things

https://en.wikipedia.org/wiki/Quaternion

	Smart pointers
	What are they?
	std::shared_ptr
	std::unique_ptr
	A small problem
	std::weak_ptr
	Exercises

	Inheritance
	Why?
	Multiple files
	Multiple include
	Separate compilation
	Performance considerations
	Exercises

	Others
	Namespaces
	Streams
	auto
	Function pointers
	Lambda functions
	std::pair
	Exceptions

	Homework

