
Motivation
Basics
Usage

Homework

10. Multithreading

Ján Dugá£ek

November 10, 2017

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

Table of Contents

1 Motivation

2 Basics
Basics
std::async

Nondeterminism
Exercises

3 Usage
std::thread

Communication between threads
std::mutex

Deadlock
Compare and swap
Exercises

4 Homework

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

Motivation

So far, our programs can run only on one CPU core

When calculation is running, we can't use any commands to

interact with it (unless the program regularly checks if

something happened, react accordingly and return back to

calculation, which is not practical)

Solution exists, but it's not simple - there are large areas of

computer science to deal speci�cally with this problem

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

Basics
std::async

Nondeterminism
Exercises

Basics

The simplest way to use multiple CPU cores is to run the

program twice, using �les to communicate

This approach is facilitated by pipes, special �les that are read

by one process and written by another, everything read is

erased

Usually, it's more e�cient to use more threads of execution in

a single process, so that they share the address space

Threads are usually created by launching a function on a new

thread, which will run independently of the thread that

launched it

Any thread usage requires adding -lpthread to command line

arguments

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

Basics
std::async

Nondeterminism
Exercises

std::async

Many tasks are so-called embarrasingly parallel, splittable into several
independent calculations with a short synthesis afterwards
This can be done with std::async, which runs a function on a di�erent thread
than the rest of the code and has a method to wait for the result and grab it

s t d : : f u t u r e <in t > got [1 0] ;
auto sum = [] (i n t min , i n t max) {

i n t r e s u l t = 0 ;
f o r (i n t i = min ; i < max ; i++) r e s u l t += i ;
r e t u r n r e s u l t ;

} ;
f o r (i n t i = 0 ; i < 10 ; i++)

got [i] = s td : : a sync (s t d : : l aunch : : async ,
sum , i ∗ 100000 , (i + 1) ∗ 100000) ;

i n t t o t a l = 0 ;
f o r (i n t i = 0 ; i < 10 ; i++)

t o t a l += got [i] . ge t () ;

future must be included

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

Basics
std::async

Nondeterminism
Exercises

Nondeterminism

Threads are unpredictable, there's no way of telling if one
thread will do a speci�c action before or after that another
thread executes some section
In the recent example, the method get() waits for the thread
to be �nished and will grab the result then, it's the only way to
be sure that it will be present at the time when it's read

During the wait, the main thread is suspended, taking no
processor time before the result is present

Creating threads, pausing them or destroying them takes a lot
of time, in the order of tens of thousands of processor cycles,
so each thread should do a lot of work before it ends

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

Basics
std::async

Nondeterminism
Exercises

Exercises

1 Calculate
∫ 4

1
e

−x
2

2 dx with high precision, splitting the
calculation into multiple threads

2 Calculate
∫ 7

2

∫ 6

0
sin x2 cos y 2dxdy with high precision,

splitting the calculation int multiple threads

Advanced:
1 Check if 4351376251585937029 is a prime, using multiple

threads
2 Check if 3437587238752890252973423 is a prime, using

multiple threads

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

std::thread

Communication between threads
std::mutex

Deadlock
Compare and swap
Exercises

std::thread

std::thread allows a much more precise way to control threads

Its constructor accepts the function name and its arguments after it

The thread probably will start running immediately after its
construction
Its join() method will cause the calling thread to wait for it to end

Its detach() method will cause the thread to run independently
and get destroyed when it ends

vo i d r e p o r t (i n t a f t e r) {
s l e e p (a f t e r) ;
s t d : : cout << " S l e p t " << std : : e nd l ;

}
// . . .
s t d : : t h r e ad r e p o r t e r (r epo r t , 1) ;
s t d : : cout << "Wait ing " << std : : e nd l ;
r e p o r t e r . j o i n () ;

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

std::thread

Communication between threads
std::mutex

Deadlock
Compare and swap
Exercises

Communication between threads

One thread may use the same variables as another thread (they may
be globals, or given to it by reference at creation time, ...)

It may happen that one thread reads a pointer and begins to use it,
another thread replaces the pointer and deletes the objects it points
to and the �rst thread is still reading the deleted data incorrectly
If the CPU is busy with many threads, threads often get paused and
the break between execution of two subsequent lines can be
extremely long
There may be a variable that marks if the pointer is being edited,
but one thread may read that it's correct, get interrupted, another
thread marks that it's not correct, change it, then the �rst thread
returns and reads incorrect data that has been correct on its
previous instruction; it may also happen that both read that it's
correct, simultaneously mark they're editing it and overwrite each
other's parts
There is no solution to this problem without special processor
instructions

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

std::thread

Communication between threads
std::mutex

Deadlock
Compare and swap
Exercises

std::mutex

std::mutex is a special variable that can be set only by one thread
It has two states, locked and unlocked, its method try_lock()
succeeds only once until it's unlocked again, lock() will keep trying
locking it until it succeeds
It can be used to prevent anything from mutual overwrite, but this
approach might have a performance cost

boo l t r y J o i n (s td : : mutex& mutex) {
i f (mutex . t r y_ lock ()) {

f o r (uns i gned i n t i =0; i < news . s i z e () ; i++)
e n t r i e s . push_back (news [i]) ;

mutex . un lock () ;
r e t u r n t r u e ;

} e l s e r e t u r n f a l s e ;
}

std::condition_variable can be used to make the thread sleep
until the mutex is unlocked

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

std::thread

Communication between threads
std::mutex

Deadlock
Compare and swap
Exercises

Deadlock

If thread 1 locks mutex A, then thread 2 locks mutex B,
then thread 1 tries to lock mutex B and thread 2 tries to
lock mutex A, then thread 1 waits for thread 2, but
thread 2 waits for thread 1, so they will wait forever; this
is an example of a situation called deadlock

Real deadlocks are usually more tangled, but can also be
simpler, it may happen that thread 1 locks mutex A and
then tries to lock it again, waiting for itself forever

This may be hard to �nd because it happens
unpredictably (the threads won't meet at the chokepoint
so often) and threads have their local data correct

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

std::thread

Communication between threads
std::mutex

Deadlock
Compare and swap
Exercises

Compare and swap

It's actually possible to make threads work with shared variables without
locking, but it's not necessarily faster and is often much harder to code
Data types that are not longer than a word (8 bytes usually) are written
atomically, so that a half-written variable is never read
Processor operations compare and swap simultaneously check if a variable
is as expected, overwrite it as expected and return if it was as expected
It is usually used so that the data is read, something is computed with
them, then it's attempted to be written and if it fails (the data are not
what they were when the computation begun), it will retry until it
succeeds

i n t was , want ;
do {

was = accessed_ ;
want = was − 2 ;

} wh i l e (! s t d : : atomic_compare_exchange_weak (
&accessed_ , &was , want)) ;

Special types like std::atomic_int have overloaded operators to
perform simple arithmetic operations on them atomically

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

std::thread

Communication between threads
std::mutex

Deadlock
Compare and swap
Exercises

Exercises

1 Write a program that reads numbers from a �le on one
thread, multiplies these numbers by 2 on another thread
and writes them into another �le on yet another thread
(they'll need a protected std::vector to send data from
one into another)

Advanced:
1 Same as the above, but do it without locking (because

std::vector is not made for concurrent access, use
simply a large �xed-width array)

Ján Dugá£ek 10. Multithreading

Motivation
Basics
Usage

Homework

Homework

Calculate the width of a thin �lm using the wavelength dependence of its
re�ectivity under angle 60◦ from perpendicular
Assume only �rst re�ection from the substrate, assume the dependence of
re�ectivity on surface and substrate as f (x) = ax + b
The two re�ected beams interfere, constructively and destructively
The index of refraction is 1.7
The dependence is one of the �les for this lecture
Use multiple CPU cores to accelerate it

width

n
0

n

substrate

sample
width

air

Advanced homework:
The same, but assume that the re�ectivity function is a polynomial of
user-set degree

Ján Dugá£ek 10. Multithreading

	Motivation
	Basics
	Basics
	std::async
	Nondeterminism
	Exercises

	Usage
	std::thread
	Communication between threads
	std::mutex
	Deadlock
	Compare and swap
	Exercises

	Homework

