# GLM # priklad Potemnik skladistni rm(list=ls()) load("beetle.RData") beetle attach(beetle) proportions <- killed/population # Logisticka regrese # Vykresleni dat x11(width=12,height=9) plot(dose,proportions,pch=20,xlab="CS2",ylab="umrtnost") # definice GLM modelu glmmod <- glm(formula = cbind(killed,population - killed) ~ dose, family = binomial(logit), data = beetle) glmmod <- glm(formula = proportions ~ dose, family = binomial(logit), weights=population, data = beetle) # alternativa summary(glmmod) # vykresleni regresni krivky t <- seq(from = min(dose), to = max(dose), length.out = 100) lines(t, predict.glm(glmmod, data.frame(dose = t), type="response"), col="red") # overeni normality residui plot(glmmod, which = 2) shapiro.test(residuals(glmmod)) # Probitovy model # Vykresleni dat plot(dose,proportions,pch=20,xlab="CS2",ylab="umrtnost") # definice GLM modelu glmmod <- glm(formula = cbind(killed, population - killed) ~ dose, family = binomial(probit), data = beetle) summary(glmmod) # vykresleni regresni krivky t <- seq(from=min(dose),to=max(dose),length.out=100) lines(t,predict.glm(glmmod,data.frame(dose=t),type="response"),col="red") # overeni normality residui plot(glmmod,which=2) shapiro.test(residuals(glmmod)) # komplementarni log-log # Vykresleni dat plot(dose,proportions,pch=20,xlab="CS2",ylab="umrtnost") # definice GLM modelu glmmod <- glm(formula = cbind(killed, population - killed) ~ dose, family = binomial(link="cloglog"),data = beetle) summary(glmmod) # vykresleni regresni krivky t <- seq(from=min(dose),to=max(dose),length.out=100) lines(t,predict.glm(glmmod,data.frame(dose=t),type="response"),col="red") # overeni normality residui plot(glmmod,which=2) shapiro.test(residuals(glmmod)) detach(beetle) #-------------------------------------------------------------------------------- # priklad AIDS ve VB rm(list=ls()) load("aids.RData") head(aids) attach(aids) # Poissonovska regrese time <- 1:36 # vykresleni dat plot(time,number,type="p",pch=20,ylab="number of AIDS", xlab="time",main="Poisson regression") # definice modelu #ind <- which(number!=0) #num <- number[ind] #tim <- time[ind] glm1 <- glm(number ~ 0 + time, family = poisson("identity")) #glm1 <- lm(number ~ time) summary(glm1) glm2 <- glm(number ~ 0 + time, family=poisson("log")) summary(glm2) glm3 <- glm(number ~ 0 + time, family=poisson("sqrt")) summary(glm3) # vykresleni regresnich krivek #points(time,fitted(glm1),col=2) xx<-seq(0,37,length.out=100) yA.logit<-predict(glm1,list(time=xx),type="response") lines(xx,yA.logit,col=2,lwd=2) yB.logit<-predict(glm2,list(time=xx),type="response") lines(xx,yB.logit,col=3,lwd=2) yC.logit<-predict(glm3,list(time=xx),type="response") lines(xx,yC.logit,col=4,lwd=2) legend("topleft",col=c(2,3,4),lty=c(1,1,1),lwd=c(2,2,2),legend=c("linear","log-linear","square-root")) # overeni normality residui plot(glm1,which=2) shapiro.test(residuals(glm1)) plot(glm2,which=2) shapiro.test(residuals(glm2)) plot(glm3,which=2) shapiro.test(residuals(glm3)) # x<-residuals(glm3) # library(nortest) # shapiro.test(x) # ad.test(x) # cvm.test(x) # pearson.test(x) # sf.test(x) # lillie.test(x) detach(aids) # ---------------------------------------------------------------------------